Tesla patents


 

TESLA PATENTS

 
SYSTEM OF TRANSMISSION OF ELECTRICAL ENERGY
 
 
  Previous Patent

Next Patent

 
 
 

UNITED STATES PATENT OFFICE.

NIKOLA TESLA OF NEW YORK, N. Y.

SYSTEM OF TRANSMISSION OF ELECTRICAL ENERGY.   SPECIFICATION forming part of Letters Patent No. 645,576, dated March 20, 1900. Application filed September 2, 1897.  Serial No. 650,343. (No model.)

To all whom it may concern: Be it known that I, NIKOLA TESLA, a citizen of the United States, residing at New York, in the county and State of New York, have invented certain new and useful improvements in Systems of Transmission of Electrical Energy, of which the following is a specification, reference being had to the drawing accompanying and forming a part of the same.

It has been well known heretofore that by rarefying the air inclosed in a vessel its insulating properties are impaired to such an extent that it becomes what may be considered as a true conductor, although one of admittedly very high resistance.  The practical information in this regard has been derived from observations necessarily limited in their scope by the character of the apparatus or means heretofore known and the quality of the electrical effects producible thereby.  Thus it has been shown by William Crookes in his classical researches, which have so far served as the chief source of knowledge of this subject, that all gasses behave as excellent insulators until rarefied to a point corresponding to a barometric pressure of about seventy-five millimeters, and even at this very low pressure the discharge of a high-tension induction-coil passes through only a part of the attenuated gas in the form of a luminous thread or arc, a still further and considerable diminution of the pressure being required to render the entire mass of the gas inclosed in a vessel conducting.  While this is true in every particular so long as electromotive or current impulses such as are obtainable with ordinary forms of apparatus are employed, I have found that neither the general behavior of the gases nor the known relations between electrical conductivity and barometric pressure are in conformity with these observations when impulses are used such as are producible by methods and apparatus described by me and which have peculiar and hitherto unobserved properties and are of effective electromotive force, measuring many hundred thousands or millions of volts.  Through the continuous perfection of these methods and apparatus and the investigation of the actions of these current impulses I have been led to the discovery of certain highly-important useful facts which have hitherto been unknown.  Among these and bearing directly upon the subject of my present application are the following: First, that atmospheric or other gases, even under normal pressure, when they are known to behave as perfect insulators, are in a large measure deprived of their dielectric properties by being subjected to the influence of electromotive impulses of the character and magnitude I have referred to and assume conducting and other qualities which have been so far observed only in gases greatly attenuated or heated to a high temperature, and, second, that the conductivity imparted to the air or gases increases very rapidly both with the augmentation of the applied electrical pressure and with the degree of rarefaction, the law in this latter respect being, however, quite different from that heretofore established.  In illustration of these facts a few observations, which I have made with apparatus devised for the purposes here contemplated, may be cited.  For example, a conductor or terminal, to which impulses such as those here considered are supplied, but which is otherwise insulated in space and is remote from any conducting-bodies, is surrounded by a luminous flame-like brush or discharge often covering many hundreds or even as much as several thousands of square feet of surface, this striking phenomenon clearly attesting the high degree of conductivity which the atmosphere attains under the influence of the immense electrical stresses to which it is subjected.  This influence is however, not confined to that portion of the atmosphere which is discernible by the eye as luminous and which, as has been the case in some instances actually observed, may fill the space within a spherical or cylindrical envelop of a diameter of sixty feet or more, but reaches out to far remote regions, the insulating qualities of the air being, as I have ascertained, still sensibly impaired at a distance many hundred times that through which the luminous discharge projects from the terminal and in all probability much farther.  The distance extends with the increase of the electromotive force of the impulses, with the diminution of the density of the atmosphere, with the elevation of the active terminal above the ground, and also, apparently, in slight measure, with the degree of moisture contained in the air.  I have likewise observed that this region of decidedly-noticeable influence continuously enlarges as time goes on, and the discharge is allowed to pass not unlike a conflagration which slowly spreads, this being possibly due to the gradual electrification or ionization of the air or to the formation of less insulating gaseous compounds.  It is, furthermore, a fact that such discharges of extreme tensions, approximating those of lightning, manifest a marked tendency to pass upward away from the ground, which may be due to electrostatic repulsion, or possibly to slight heating and consequent rising of the electrified or ionized air.  These latter observations make it appear probable that a discharge of this character allowed to escape into the atmosphere from a terminal maintained at a great height will gradually leak through and establish a good conducting-path to more elevated and better conducting air strata, a process which possibly takes place in silent lightning discharges frequently witnessed on hot and sultry days.  It will be apparent to what an extent the conductivity imparted to the air is enhanced by the increase of the electromotive force of the impulses when it is stated that in some instances the area covered by the flame discharge mentioned was enlarged more than sixfold by an augmentation of the electrical pressure, amounting scarcely to more than fifty per cent.  As to the influence of rarefaction upon the electric conductivity imparted to the gases it is noteworthy that, whereas the atmospheric or other gases begin ordinarily to manifest this quality at something like seventy-five millimeters barometric pressure with the impulses of excessive electromotive force to which I have referred, the conductivity, as already pointed out, begins even at normal pressure and continuously increases with the degree of tenuity of the gas, so that at, say, one hundred and thirty millimeters pressure, when the gases are known to be still nearly perfect insulators for ordinary electromotive forces, they behave toward electromotive impulses of several millions of volts, like excellent conductors, as though they were rarefied to a much higher degree.  By the discovery of these facts and the perfection of means for producing in a safe, economical, and thoroughly-practicable manner current impulses of the character described it becomes possible to transmit through easily-accessible and only moderately-rarefied strata of the atmosphere electrical energy not merely in insignificant quantities, such as are suitable for the operation of delicate instruments and like purposes, but also in quantities suitable for industrial uses on a large scale up to practically any amount and, according to all the experimental evidence I have obtained, to any terrestrial distance.  To conduce to a better understanding or this method of transmission of energy and to distinguish it clearly, both in its theoretical aspect and in its practical bearing; from other known modes of transmission, it is useful to state that all previous efforts made by myself and others for transmitting electrical energy to a distance without the use of metallic conductors, chiefly with the object of actuating sensitive receivers, have been based, in so far as the atmosphere is concerned, upon those qualities which it possesses by virtue of its being an excellent insulator, and all these attempts would have been obviously recognized as ineffective if not entirely futile in the presence of a conducting atmosphere or medium.  The utilization of any conducting properties of the air for purposes of transmission of energy has been hitherto out of the question in the absence of apparatus suitable for meeting the many and difficult requirements, although it has long been known or surmised that atmospheric strata at great altitudes—say fifteen or more miles above sea-level—are, or should be, in a measure, conducting; but assuming even that the indispensable means should have been produced then still a difficulty, which in the present state of the mechanical arts must be considered as insuperable, would remain—namely, that of maintaining terminals at elevations of fifteen miles or more above the level of the sea.  Through my discoveries before mentioned and the production of adequate means the necessity of maintaining terminals at such inaccessible altitudes is obviated and a practical method and system of transmission of energy through the natural media is afforded essentially different from all those available up to the present time and possessing, moreover, this important practical advantage, that whereas in all such methods or systems heretofore used or proposed but a minute fraction of the total energy expended by the generator or transmitter was recoverable in a distant receiving apparatus by my method and appliances it is possible to utilize by far the greater portion of the energy of the source and in any locality however remote from the same.

Expressed briefly, my present invention, based upon these discoveries, consists then in producing at one point an electrical pressure of such character and magnitude as to cause thereby a current to traverse elevated strata of the air between the point of generation and a distant point to which the energy is to be received and utilized.

In the accompanying drawing a general arrangement of apparatus is diagrammatically illustrated such as I contemplate employing in the carrying out of my invention on an industrial scale—as, for instance, for lighting distant cities or districts from places where cheap power is obtainable. 

Referring to the drawing, A is a coil, generally of many turns and of a very large diameter, wound in spiral form either about a magnetic core or not, as may be found necessary, C is a second coil, formed of a conductor of much larger section and smaller . . .

. . . 

. . . even thousands of miles, with terminals not more than thirty to thirty-five thousand feet above the level of the sea, and even this comparatively-small elevation will be required chiefly for reasons of economy, and, if desired, it may be considerably reduced, since by such means as have been described practically any potential that is desired may be obtained, the currents through the air strata may be rendered very small, whereby the loss in the transmission may be reduced.

It will be understood that the transmitting as well as the receiving coils, transformers, or other apparatus may be in some cases moveable–as, for example, when they are carried by vessels floating in the air or by ships at sea. In such a case, or generally, the connection of one of the terminals of the high-tension coil or coils to the ground may not be permanent, but may be intermittently or inductively established, and any such or similar modifications I shall consider as within the scope of my invention. While the description here given contemplates chiefly a method and system of energy transmission to a distance through the natural media for industrial purposes, the principles which I have herein disclosed and the apparatus which I have shown will obviously have many other valuable uses–as, for instance, when it is desirable to transmit intelligible messages to great distances, or to illuminate upper strata of the air, or to produce, designedly, any useful changes in the condition of the atmosphere, or to manufacture from the gases of the same products, as nitric acid, fertilizing compounds, or the like, by the action of such current impulses, for all of which and for many other valuable purposes they are eminently suitable, and I do not wish to limit myself in this respect. Obviously, also, certain features of my invention here disclosed will be useful as disconnected from the method itself–as, for example, in other systems of energy transmission, for whatever purpose they may be intended, the transmitting and receiving transformers arranged and connected as illustrated, the feature of a transmitting and receiving coil or conductor, both connected to the ground and to an elevated-terminal and adjusted so as to vibrate in synchronism, the proportioning of such conductors or coils, as above specified, the feature of a receiving-transformer, with its primary connected to earth and to an elevated terminal and having the operative devices in its secondary, and other features or particulars, such as have been described in this specification or will readily suggest themselves by a perusal of the same.

I do not claim in this application a transformer for developing or converting currents of high potential in the form herewith shown and described and with the two coils connected together, as and for the purpose set forth, having made these improvements the subject of a p:\tent granted to me November 2, 1897, No. 593,138, nor do I claim herein the apparatus employed in carrying out the method of this application when such apparatus is specially constructed find arranged for securing the particular object sought in the present invention, as these last-named features are made the subject of an application filed as a division of this application on February 19,1900, Serial No. 5,780.

What I now claim is– 1. The method hereinbefore described of transmitting electrical energy through the natural media, which consists in producing at a generating-station a very high electrical pressure, causing thereby a propagation or flow of electrical energy; by conduction, through the earth and the air strata, and collecting or receiving at a. distant point the electrical energy so propagated or caused to flow.

2. The method hereinbefore described of transmitting electrical energy, which consists in producing at a generating-station a very high electrical pressure, conducting the cur- S rent caused thereby to earth and to a terminal at an elevation at which the atmosphere serves as a conductor therefor and collecting the current by a second elevated terminal at a distance from the first.

3. The method hereinbefore described of transmitting electrical energy through the natural media, which consists in producing between the earth and a generator-terminal elevated above the same, at a generating-station, a sufficiently-high electromotive force to render elevated air strata conducting, causing thereby a propagation or flow of electrical energy, by conduction, through the air strata, and collecting or receiving at a point distant from the generating-station the electrical energy so propagated or caused to flow.

4. The method hereinbefore described of transmitting electrical energy through the natural media, which consists in producing between the earth and a generator-terminal elevated above the same, at a generating-station, a sufficiently-high electromotive force to render the air strata at or near the elevated terminal conducting, causing thereby a propagation or flow of electrical energy, by conduction, through the air strata, and collecting or receiving at a point distant from the generating-station the electrical energy so propagated or caused to flow.

5. The method hereinbefore described of transmitting electrical energy through the natural media, which consists in producing between the earth and a generator-terminal elevated above the same, at a generating-station, electrical impulses of a sufficiently-high electromotive force to render elevated air strata conducting, causing thereby current impulses to pass, by conduction, through the air strata, and collecting or receiving at a point distant from the generating-station, the energy of the current impulses by means of a circuit synchronized with the impulses.

6. The method hereinbefore described of . . . 

. . .

9. The method hereinbefore described of transmitting electrical energy through the natural media, which consists in generating current impulses of relatively-low electromotive force at a generating-station, utilizing such impulses to energize the primary of a transformer, generating by means of such primary circuit impulses in a secondary surrounding by the primary and connected to the earth and to an elevated terminal, of sufficiently-high electromotive force to render elevated air strata conducting, causing thereby impulses to be propagated through the air strata, collecting or receiving the energy of such impulses, at a point distant from the generating-station, by means of a receiving circuit connected to the earth and to an elevated terminal, and utilizing the energy so received to energize a secondary circuit of low potential surrounding the receiving-circuit.

NIKOLA TESLA

Witnesses: M. Lawson Dyer, G. W. Martling.

 
 
  Top Previous Patent | Next Patent | Back To Contents  
 
 
ELECTRICAL TRANSFORMER Transformer for High-Frequency Lighting
 
 
  Tesla Patents TOC

Next Patent

 
 
 
 

 
 

UNITED STATES PATENT OFFICE.

NIKOLA TESLA OF NEW YORK, N. Y.

Electrical Transformer.   SPECIFICATION forming part of Letters Patent No. 593,138, dated November 2, 1897. Application filed March 20, 1897.  Serial No. 629,453. (No model.)

To all whom, it may concern: Be it known that I, NIKOLA TESLA, a citizen of the United States, residing at New York, in the county and State of New York, have invented certain new and useful Improvements in Electrical Transformers, of which the following is a specification, reference being had to the drawings accompanying and forming a part of the same.

The present application is based upon an apparatus which I have devised and employed for to purpose of developing electrical currents of high potential, which transformers or induction-coils constructed on the principles heretofore followed in the manufacture of such instruments are wholly incapable of producing or practically utilizing, at least without serious liability of the destruction of the apparatus itself and danger to persons approaching or handling it.

The improvement involves a novel form of transformer or induction-coil and a system for the transmission of electrical energy by means of the same in which the energy of the source is raised to a much higher potential for transmission over the line than has ever been practically employed heretofore, and the apparatus is constructed with reference to the production of such a potential and so as to be not only free from the danger of injury from the destruction of insulation, but safe to handle.  To this end I construct an induction-coil or transformer in which the primary and secondary coils are wound or arranged in such manner that the convolutions of the conductor of the latter will be farther removed from the primary as the liability of injury from the effects of potential increases, the terminal or point of highest potential being the most remote, and so that between adjacent convolutions there shall be the least possible difference of potential.

The type of coil in which the last-named features are present is the flat spiral, and this form I generally employ, winding the primary on the outside of the secondary and taking off the current from the latter at the center or inner end of the spiral.  I may depart from or vary this form, however, in the particulars hereinafter specified.

In constructing my improved transformers I employ a length of secondary which is approximately one-quarter of the wave length of the electrical disturbance in the circuit including the secondary coil, based on the velocity of propagation of electrical disturbances through such circuit, or, in general, of such length that the potential at the terminal of the secondary which is the more remote from the primary shall be at its maximum. In using these coils I connect one end of the secondary, or that in proximity to the primary, to earth, and in order to more effectively provide against injury to persons or to the apparatus I also connect it with the primary.

In the accompanying drawings, Figure 1 is a diagram illustrating the plan of winding and connection which I employ in constructing my improved coils and the manner of using them for the transmission of energy over long distances.  Fig. 2 is a side elevation, and Fig. 3 a side elevation and part section, of modified forms of induction-coil made in accordance with my invention.

A designates a core, which may be magnetic when so desired.

B is the secondary coil, wound upon said core in generally spiral form.

C is the primary, which is wound around in proximity to the secondary.  One terminal of the latter will be at the center of the spiral coil, and from this the current is taken to line or for other purposes. The other terminal of the secondary is connected to earth and preferably also to the primary.

When two coils are used in a transmission system in which the currents are raised to a high potential and then reconverted to a lower potential, the receiving-transformer will be constructed and connected in the same manner as the first-that is to say, the inner or center end of what corresponds to the secondary of the first will be connected to line and the other end to earth and to the local circuit or that which corresponds to the primary of the first.  In such case also the line-wire should be supported in such manner as to avoid loss by the current jumping from line to objects in its vicinity and in contact with earth–as, for example, by means of long insulators, mounted, preferably, on metal poles so that in case of leakage from the line it will pass harmlessly to earth.  In Fig. 1 where such a system is illustrated, a dynamo G is conveniently represented as supplying the primary of the sending or “step-up” transformer, and lamps II and motors K are shown as connected with the corresponding circuit of the receiving or “step-down” transformer.

Instead of winding the coils in the form of a flat spiral the secondary may be wound on a support in the shape of a frustum of a cone and the primary wound around its base, as shown in Fig. 2.

In practice for apparatus designed for ordinary usage the coil is preferably constructed on the plan illustrated in Fig. 3.  In this figure L L are spools of insulating material upon which the secondary is wound-in the present case, however, in two sections, so as to constitute really two secondaries.  The primary C is a spirally-wound flat strip surrounding both secondaries B.

The inner terminals of the secondaries are led out through tubes of insulating material M, while the other or outside terminals are connected with the primary.

The length of the secondary coil B or of each secondary coil when two are used, as in Fig. 3, is, as before stated, approximately one-quarter of the wave length of the electrical disturbance in the secondary circuit, based on the velocity of propagation of the electrical disturbance through the coil itself and the circuit with which it is designed to be used-that is to say, if the rate at which a current traverses the circuit, including the coil, be one hundred and eighty-five thousand miles per second, then a frequency of nine hundred and twenty-five per second would maintain nine hundred and twenty-five stationary waves in a circuit one hundred and eighty-five thousand miles long, and each wave length would be two hundred miles in length.  For such a frequency I should use a secondary fifty miles in length, so that at one terminal the potential would be zero and at the other maximum.

Coils of the character herein described have several important advantages.  As the potential increases with the number of turns the difference of potential between adjacent turns is comparatively small, and hence a very high potential, impracticable with ordinary coils, may be successfully maintained.

As the secondary is electrically connected with the primary the latter will be at substantially the same potential as the adjacent portions of the secondary, so that there will be no tendency for sparks to jump from one to the other and destroy the insulation.  Moreover, as both primary and secondary are grounded and the line-terminal of the coil carried and protected to a point remote from the apparatus the danger of a discharge through the body of a person handling or approaching the apparatus is reduced to a minimum.

I am aware that an induction-coil in the form of a flat spiral is not in itself new, and this I do not claim; but

What I claim as my invention is—

1. A transformer for developing or converting currents of high potential, comprising a primary and secondary coil, one terminal of the secondary being electrically connected with the primary; and with earth when the transformer is in use, as set forth.

2. A transformer for developing or converting currents of high potential, comprising a primary and secondary wound in the form of a flat spiral, the end of the secondary adjacent to the primary being electrically connected therewith and with earth when the transformer is in use, as set forth.

3. A transformer for developing or converting currents of high potential comprising a primary and secondary wound in the form of a spiral, the secondary being inside of, and surrounded by, the convolutions of the primary and having its adjacent terminal electrically connected therewith and with earth when the transformer is in use, as set forth.

4. In a system for the conversion and transmission of electrical energy, the combination of two transformers, one for raising, the other for lowering, the potential of the currents, the said transformers having one terminal of the longer or fine-wire coils connected to line, and the other terminals adjacent to the shorter coils electrically connected therewith and to the earth, as set forth.

NIKOLA TESLA.

 

     Witnesses: M. LAWSON DYER, G. W. MARTLING.

 
 
 
 
  Top | Tesla Patents TOC | Next Patent | Back To Contents  
 
 
COIL FOR ELECTROMAGNETS
 
 
  Previous Patent

Next Patent

 
 
 

UNITED STATES PATENT OFFICENIKOLA TESLA, OF NEW YORK, N. Y. COIL FOR ELECTRO-MAGNETS.

SPECIFICATION forming part of Letters Patent No. 512,340, dated January 9, 1894.

Application filed July 7, 1893. Serial No. 479,804. (No model.)

To all whom it may concern: Be it known that I, NIKOLA TESLA, a citizen of the United States, residing at New York, in the county and State of New York, have invented certain new and useful improvements in Coils for Electro-Magnets and other apparatus, of which the following is a specification, reference being had to the drawings accompanying and forming a part of the same.

In electric apparatus or systems in, which alternating currents are employed the self-induction of the coils or conductors may, and, in fact, in many cases does operate disadvantageously by giving rise to false currents which often reduce what is known as the commercial efficiency of the apparatus composing the system or operate detrimentally in other respects. The effects of self-induction, above referred to, are known to be neutralized by proportioning to a proper degree the capacity of the circuit with relation to the self-induction and frequency of the currents. This has been accomplished heretofore by the use of condensers constructed and applied as separate instruments. My present invention has for its object to avoid the employment of condensers, which are expensive, cumbersome and difficult to maintain in perfect condition, and to so construct the coils themselves as to accomplish the same ultimate object. I would here state that by the term coils I desire to include generally helices, solenoids, or, in fact, any conductor the different parts of which by the requirements of its application or use are brought into such relations with each other as to materially increase the self-induction. I have found that in every coil there exists a certain relation between its self-induction and capacity that permits, a current of given frequency and potential to pass through it with no other opposition than that of ohmic resistance, or, in other words, as though it possessed no self-induction. This is due to the mutual relations existing between the special character of the current and the self-induction and capacity of the coil, the latter quantity being just capable of neutralizing the self-induction for that frequency. It is well known that the higher the frequency or potential difference of the current the smaller the capacity required to counteract the self-induction; hence, in any coil, however small the capacity, it may be sufficient for the purpose stated if the proper conditions in other respects be secured in the ordinary coils the difference of potential between adjacent turns or spirals is very small, so that while they are in a sense condensers, they possess but very small capacity and the relations between the two quantities, self-induction and capacity, are not such as under any ordinary conditions satisfy the requirements herein contemplated, because the capacity relatively to the self-induction is very small. In order to attain my object and to properly increase the capacity of any given coil, I wind it in such way as to secure a greater difference of potential between its adjacent turns or convolutions, and since the energy stored in the coil-considering the latter as a condenser, is proportionate to the square of the potential difference between its adjacent convolutions, it is evident that I may in this way secure by the proper disposition of these convolutions I greatly increased capacity for a given increase in potential difference between the turns. I have illustrated diagrammatically in the accompanying drawings the general nature of the plan which I adopt for carrying out this invention. Figure 1 is a diagram of a coil wound in the ordinary manner. Fig. 2 is a diagram of a winding designed to secure the objects of my invention. Let Fig. 1, designate any given coil the spires or convolutions of which are wound upon and insulated from each other. Let it be assumed that the terminals of this coil show a potential difference of one hundred volts, and that there are one thousand convolutions: then considering any two contiguous points on adjacent convolutions let it be assumed that there will exist between them a potential difference of one-tenth of a volt. If now, as shown in Fig. 2, a conductor B be wound parallel with the conductor A and insulated from it, and the end of A be connected with the starting point of B, the aggregate length of the two conductor being such that the assumed number of convolutions or turns is the same, vis, one thousand, then the potential difference between any to adjacent points in A and B will be fifty volts, and as the capacity effect is proportionate to the square of this difference, the energy stored in the coil as a whole will now be two hundred and fifty thousand as great. Following out this principle, I may wind any given coil either in whole or in part, not only in the specific manner herein illustrated, but in a great variety of ways, well known in the art, so as to secure between adjacent convolutions such potential difference as will give the proper capacity to neutralize the self-induction for any given current that may be employed. Capacity secured in this particular way possesses an additional advantage in that it is evenly distributed, a consideration of the greatest importance in many cases, and the results, both as to efficiency and economy, are the more readily and easily obtained as the size of the coils, the potential difference or frequency of the currents are increased. Coils composed of independent strands or conductors wound side by side and connected in series are not In themselves new, and I do not regard a more detailed description of the same necessary. But heretofore, so far as I am aware, the objects in view have been essentially different from mine, and the results which I obtain even if an incident to such forms of winding have not been appreciated or taken advantage of. In carrying out my invention it is to be observed that certain facts are well understood by those skilled in the art, viz: the relations of capacity, self-induction, and the frequency and potential difference of the current. What capacity, therefore, in any given case it is desirable to obtain and what special winding will secure it, are readily determinable from the other factors which are known. What I claim as my invention is 1. A coil for electric apparatus the adjacent convolutions of which form parts of the circuit between which there exists a potential difference sufficient to secure in the coil a capacity capable of neutralizing its self-induction, as hereinbefore described. 2. A coil composed of contiguous or adjacent insulated conductors electrically connected in series and having a potential difference of such value as to give to the coil as a whole, a capacity sufficient to neutralize its self-induction, as set forth.

NIKOLA TESLA.

   Witnesses: ROBT. F. GAYLORD, PARKER W. PAGE.

 
 
Top | Previous Patent | Back To Contents
 
 
MEANS FOR INCREASING THE INTENSITY OF ELECTRICAL OSCILLATIONS
 
 
  Previous Patent

Next Patent

 
 
 

 

UNITED STATES PATENT OFFICE.

NIKOLA TESLA, OF NEW YORK, N. Y.

MEANS FOR INCREASING THE INTENSITY OF ELECTRICAL OSCILLATIONS.

SPECIFICATION forming part of Letters Patent No. 685,012, dated October 23, 1901.

Application filed March 21, 1900, Renewed July 3, 1901, Serial No. 66,980 (No Model.)

To all whom it may concern: Be it known that I, NIKOLA TESLA, a citizen of the United States, residing at the borough of Manhattan, in the city, county, and State of New York, have invented certain new and useful Improvements in Means for Increasing the Intensity of Electrical Oscillations, of which the following is a specification, reference being had to the drawings accompanying and forming part of the same.

In many scientific and practical uses of electrical impulses or oscillations預s, for example, in systems of transmitting intelligence to distant points擁t is of great importance to intensify as much as possible the current impulses or vibrations which are produced in the circuits of the transmitting and receiving instruments, particularly of the latter.

It is well known that when electrical impulses are impressed upon a circuit adapted to oscillate freely the intensity of the oscillations developed in the same is dependent on the magnitude of its physical constants and the relation of the periods of the impressed and of the free oscillations. For the attainment of the best result it is necessary that the periods of the impressed should be the same as that of the free oscillations, under which conditions the intensity of the latter is greatest and chiefly dependent on the inductance and resistance of the circuit, being directly proportionate to the former and inversely to the latter. In order, therefore, to intensify the impulses or oscillations excited in the circuit擁n other words, to produce the greatest rise of current or electrical pressure in the same擁t is desirable to make its inductance as large and its resistance as small as practicable. Having this end in view I have devised and used conductors of special forms and of relatively very large cross-section; but I have found that limitations exist in regard to the increase of the inductance as well as to the diminution of the resistance. This will be understood when it is borne in mind that the resonant rise of current or pressure in a freely-oscillating circuit is proportionate to the frequency of the impulses and that a large inductance in general involves a slow vibration. On the other hand, an increase of the section of the conductor with the object of reducing its resistance is, beyond a certain limit, of little or no value, principally because electrical oscillations, particularly those of high frequency, pass mainly through the superficial conducting layers, and while it is true that this drawback may be overcome in a measure by the employment of thin ribbons, tubes, or stranded cables, yet in practice other disadvantages arise, which often more than offset the gain.

It is a well-established fact that as the temperature of a metallic conductor rises its electrical resistance increases, and in recognition of this constructors of commercial electrical apparatus have heretofore resorted to many expedients for preventing the coils and other parts of the same from becoming heated when in use, but merely with a view to economizing energy and reducing the cost of construction and operation of the apparatus.

Now I have discovered that when a circuit adapted to vibrate freely is maintained at a low temperature the oscillations excited in the same are to an extraordinary degree magnified and prolonged, and I am thus enabled to produce many valuable results which have heretofore been wholly impracticable.

Briefly stated, then, my invention consists in producing a great increase in the intensity and duration of the oscillations excited in a freely-vibrating or resonating circuit by maintaining the same at a low temperature.

Ordinarily in commercial apparatus such provision is made only with the object of preventing wasteful heating, and in any event its influence upon the intensity of the oscillations is very slight and practically negligible, for as a rule impulses of arbitrary frequency are impressed upon a circuit, irrespective of its own free vibrations, and a resonant rise is expressly avoided.

My invention, it will be understood, does not primarily contemplate the saving of energy, but aims at the attainment of a distinctly novel and valuable result葉hat is, the increase to the greatest practicable degree of the intensity and duration of free oscillations. It may be usefully applied in all cases when this special object is sought, but offers exceptional advantages in those instances in which the freely-oscillating discharges of a condenser, are utilized.

The best and most convenient manner of carrying out the invention of which I am now aware is to surround the freely-vibrating circuit or conductor, which is to be maintained at a low temperature, with a suitable cooling medium, which may be any kind of freezing mixture or agent, such as liquid air, and in order to derive the fullest benefit from the improvement the circuit should be primarily constructed so as to have the greatest possible self-induction and the smallest practicable resistance, and other rules of construction which are now recognized should be observed. For example, when in a system of transmission of energy for any purpose through the natural media the transmitting and receiving conductors are connected to earth and to an insulated terminal, respectively, the lengths of these conductors should be one-quarter of the wave length of the disturbance propagated through them.

In the accompanying drawing I have shown graphically a disposition of apparatus which may be used in applying practically my invention.

The drawing illustrates in perspective two devices, either of which may be the transmitter, while the other is the receiver. In each there is a coil of few turns and low resistance, (designated in one by A and in the other by A’.) The former coil, supposed to be forming part of the transmitter, is to be connected with a suitable source of current, while the latter is to be included in circuit with a receiving device. In inductive relation to said coils in each instrument is a flat spirally-wound coil B or B’, one terminal of which is shown as connected to a ground-plate C, while the other, leading from the center, is adapted to be connected to an insulated terminal, which is generally maintained at an elevation in the air. The coils B B’ are placed in insulating- receptacles D, which contain the freezing agent and around which the coils A and A’ are wound.

Coils in the form of a flat spiral, such as those described, are eminently suited for the production of free oscillations; but obviously conductors or circuits of any other form may be used, if desired.

From the foregoing the operation of the apparatus will now be readily understood. Assume, first, as the simplest case that upon the coil A of the transmitter impulses or oscillations of an arbitrary frequency and irrespective of its own free vibrations are impressed. Corresponding oscillations will then be induced in the circuit B, which, being constructed and adjusted, as before indicated, so as to vibrate at the same rate, will greatly magnify them, the increase being directly proportionate to the product of the frequency of the oscillations and the inductance of circuit B and inversely to the resistance of the latter. Other conditions remaining the same, the intensity of the oscillations in the resonating-circuit B will be increased in the same proportion as its resistance is reduced. Very often, however, the conditions may be such that the gain sought is not realized directly by diminishing the resistance of the circuit. In such cases the skilled expert who applies the invention will turn to advantage the reduction of resistance by using a correspondingly longer conductor, thus securing a much greater self-induction, and under all circumstances he will determine the dimensions of the circuit, so as to get the greatest value of the ratio of its inductance to its resistance, which determines the intensity of the free oscillations. The vibrations of coil B greatly strengthened, spread to a distance and on reaching the tuned receiving-conductor B’ excite corresponding oscillations in the same, which for similar reasons are intensified, with the result of inducing correspondingly stronger currents or oscillations in circuit A’, including the receiving device. When, as may be the case in the transmission of intelligible signals, the circuit A is periodically closed and opened, the effect upon the receiver is heightened in the manner above described not only because the impulses in the coils B and B’ are strengthened, but also on account of their persistence through a longer interval of time. The advantages offered by the invention are still more fully realized when the circuit A of the transmitter instead of having impulses of an arbitrary frequency impressed upon it is itself permitted to vibrate at its own rate, and more particularly so if it be energized by the freely-oscillating high-frequency discharges of a condenser. In such a case the cooling of the conductor A, which may be effected in any suitable manner, results in an extraordinary magnification of the oscillation in the resonating-circuit B, which I attribute to the increased intensity as well as greater number of the high-frequency oscillations obtained in the circuit A. The receiving coil B’ is energized stronger in proportion and induces currents of greater intensity in the circuits A’. It is evident from the above that the greater the number of the freely-vibrating circuits which alternately receive and transmit energy from one to another the greater, relatively, will be the gain secured by applying my invention.

I do not-of course intend to limit myself to the specific manner and means described of artificial cooling, nor to the particular forms and arrangements of the circuits shown. By taking advantage of the facts above pointed out and of the means described I have found it possible to secure a rise of electrical pressure in an excited circuit very many times greater than has heretofore been obtainable, and this result makes it practicable, among other things, to greatly extend the distance of transmission of signals and to exclude much more effectively interference with the same than has been possible heretofore.

Having now described my invention, what I claim is-

1. The combination with a circuit adapted to vibrate freely, of means for artificially cooling the same to a low temperature, as herein set forth.

2. In an apparatus for transmitting or receiving electrical impulses or oscillations, the combination with a primary and a secondary circuit, adapted to vibrate freely in response to the impressed oscillations, of means for artificially cooling the same to a low temperature, as herein set forth.

3. In a system for the transmission of electrical energy, a circuit upon which electrical oscillations are impressed, and which is adapted to vibrate freely, in combination with a receptacle containing an artificial refrigerant in which said circuit is immersed, as herein set forth.

4. The means of increasing the intensity of the electrical impulses or oscillations impressed upon a freely-vibrating circuit, consisting of an artificial refrigerant combined with and applied to such circuit and adapted to maintain the same at a low temperature.

5. The means of intensifying and prolonging the electrical oscillations produced in a freely-vibrating circuit, consisting of an artificial refrigerant applied to such circuit and adapted to maintain the same at a uniform low temperature.

6. In a system for the transmission of energy, a series of transmitting and receiving circuits adapted to vibrate freely, in combination with means for artificially maintaining the same at a low temperature, as set forth.

NIKOLA TESLA.                

Witnesses: John C. Kerr, M. Lawson Dyer.

 

 

APPARATUS FOR TRANSMITTING ELECTRICAL ENERGY
 
  Previous Patent

Next Patent

 
 
 

UNITED STATES PATENT OFFICE.

NIKOLA TESLA, OF NEW YORK, N. Y.

APPARATUS FOR TRANSMITTING ELECTRICAL ENERGY

1,119,732.                             Specification of Letters Patent.           Patented Dec. 1, 1914.

Application filed January 18. 1902, Serial No. 90,245. Renewed May 4, 1907. Serial No. 371,817.

To all whom it may concern: Be it known that I, NIKOLA TESLA, a citizen of the United States, residing at the borough of Manhattan, in the city, county, and State of New York, have invented certain new and useful Improvements in Apparatus for Transmitting Electrical Energy, of which the following is a specification, reference being had to the drawing accompanying and forming a part of the same.

In endeavoring to adapt currents or discharges of very high tension to various valuable uses, as the distribution of energy through wires from central plants to distant places of consumption, or the transmission of powerful disturbances to great distances, through the natural or non-artificial media. I have encountered difficulties in confining considerable amounts of electricity to the conductors and preventing its leakage over their supports, or its escape into the ambient air, which always takes place when the electric surface density reaches a certain value.

The intensity of the effect of a transmitting circuit with a free or elevated terminal is proportionate to the quantity of electricity displaced which is determined by the product of the capacity of the circuit, the pressure, and the frequency of the currents employed. To produce an electrical movement of the required magnitude it is desirable to charge the terminal as highly as possible, for while a great quantity of electricity may also be displaced by a large capacity charged to low pressure, there are disadvantages met with in many cases when the former is made too large. These are due to the fact that, an increase of the capacity entails a lowering of the frequency of the impulses or discharges and a diminution of the energy of vibration. This will be understood when it is borne in mind, that a circuit with a large capacity behaves us a slackspring, whereas one with a small capacity acts a stiff spring, vibrating more vigorously. Therefore, in order to attain the highest possible frequency, which for certain purposes is advantageous and, apart from that, to develop the greatest energy in such a transmitting circuit, I employ a terminal of relatively small capacity, which I charge to as high a pressure as practicable. To accomplish this result I have found it imperative to so construct the elevated conductor, that its outer surface, on which the electrical charge chiefly accumulates, has itself a large radius of curvature, or is composed of separate elements which, irrespective of their own radius of curvature, are arranged in close proximity to each so other and so, that the outside ideal surface enveloping them is of a large radius. Evidently, the smaller the radius of curvature the greater, for a given electric displacement, will be the surface-density and, consequently the lower the limiting pressure to which the terminal may he charged without electricity escaping into the air. Such a terminal secure to an insulating support entering more or less into its interior, and I likewise connect the circuit to it inside or, generally, at points where the electric density is small. This plan of constructing and supporting a highly charged conductor I have found to be of great practical importance, and it may be usefully applied in many ways.

Referring to the accompanying drawing, the figure is a view in elevation and part section of an improved free terminal and circuit of large surface with supporting structure and generating apparatus.

The terminal D consists of a suitably shaped metallic frame, in this case a ring of nearly circular cross section, which is covered with half spherical metal plates P P, thus constituting a very large conducting surface, smooth on all places where the electric charge principally accumulates. The frame is carried by a strong platform expressly provided for safety appliances, instruments of observation, etc., which in turn rests on insulating supports F F. These should penetrate far into the hollow space formed by the terminal, and if the electric density at the points where they are bolted to the frame is still considerable, they may specially protected by conducting hoods as H.

A part of the improvements which form the subject of this specification, the transmitting circuit, in its general features, is identical with that described and claimed in my original Patents Nos. 645,576 and 649,621. The circuit comprises a coil A which is in close inductive relation with a primary C, and one end of which is connected to a ground-plate E, while its other end is led through a separate self-induction coil B and a metallic cylinder B’ to the terminal D.  The connection to the latter should always be made at, or near the center, in order to secure a symmetrical distribution of the current, as otherwise, when the frequency is very high and the flow of large volume, the performance of the apparatus might be impaired. The primary C may be excited in any desired manner, from a suitable source of currents G, which may be an alternator or condenser, the important requirement being that the resonant condition is established, that is to say, that the terminal D is charged to the maximum pressure developed in the circuit, as I have specified in my original patents before referred to. The adjustments should be made with particular care when the transmitter is one of great power, not only on account of economy, but also in order to avoid danger. I have shown to that it is practicable to produce in a resonating circuit as E A B B’ D immense electrical activities, measured by tens and even hundreds of thousands of horse-power, and in such a case, if the points of maximum pressure should be shifted below the terminal D, along coil B, a ball of fire might break out and destroy the support F or anything else in the way. For the better appreciation of the nature of this danger it should he stated, that the destructive action may take place with inconceivable violence. This will cease to be surprising when it is borne in mind, that the entire energy accumulated in the excited circuit, instead of requiring, as under normal working conditions, one quarter of the period or more for its transformation from static to kinetic form, may spend itself in an incomparably smaller interval of time, at a rate of many millions of horse power. The accident is apt to occur when, the transmitting circuit being strongly excited, the impressed oscillations upon it are caused, in any manner more or less sudden, to be more rapid than the free oscillations. It is therefore advisable to begin the adjustments with feeble and somewhat slower impressed oscillations. strengthening and quickening them gradually, until the apparatus has been brought under perfect control. To increase the safety, I provide on a convenient place, preferably on terminal D, one or more elements or plates either of somewhat smaller radius of curvature or protruding more or less beyond the others (in which case they maybe of larger radius of curvature) so that, should the pressure rise to a value, beyond which it is not desired to go, the powerful discharge may dart out there and lose itself harmlessly in air. Such a plate, performing a function similar to that of a safety valve on a high pressure reservoir, is indicated at V.

Still further extending the principles underlying my invention, special reference is made to coil B and conductor B’. The latter is in the form of a cylinder with smooth or polished surface of a radius much larger than that of the half spherical elements P P, and widens out at the bottom into a hood H, which should be slotted to avoid loss by eddy currents and the purpose of which will be clear from the foregoing. The coil B is wound on a frame or drum D1 of insulating material, with its turns close together. I have discovered that when so wound the effect of the small radius of curvature of the wire itself is overcome and the coil behaves as a conductor of large radius of curvature, corresponding to that of the drum. This feature is of considerable practical importance and is applicable not only in this special instance, but generally. For example, such plates at P P of terminal D, though preferably of large radius of curvature, need not be necessarily so for provided only that the individual plates or elements of a high potential conductor or terminal are arranged in proximity to each other and with their outer boundaries along an ideal symmetrical enveloping surface of a large radius of curvature, the advantages of the invention will be more or less fully realized. The lower end of the coil B—which, if desired, may be extended up to the terminal D should be somewhat below the uppermost turn of coil A. This, I find, lessens the tendency of the charge to break out from the wire connecting both and to pass along the support F’.

Having described my invention, I claim: 1. As a means for producing great electrical activities a resonant circuit having its outer conducting boundaries, which are charged to a high potential, arranged in surfaces of large radii of curvature so as to prevent leakage of the oscillating charge, substantially as set forth.

2. In apparatus for the transmission of electrical energy a circuit connected to ground and to an elevated terminal and having its outer conducting boundaries, which are subject to high tension, arranged in surfaces of large radii of curvature substantially as, and for the purpose described.

3. In a plant for the transmission of electrical energy without wires, in combination with a primary or exciting circuit a secondary connected to ground and to an elevated terminal and having its outer conducting boundaries, which are charged to a high potential, arranged in surfaces of large radii of curvature for the purpose of preventing leakage and loss of energy, substantially as set forth.

4. As a means for transmitting electrical energy to a distance through the natural media a grounded resonant circuit, comprising, a part upon which oscillations are impressed and another for raising the tension, having its outer conducting boundaries on which a high-tension charge accumulates arranged in surfaces of large radii of curvature, substantially as described.

5. The means for producing excessive electric potentials consisting of a primary exciting circuit and a resonant secondary having its outer conducting elements which are subject to high tension arranged in proximity to each other and in surface of large of curvature so as to prevent leakage of the charge and attendant lowering of potential, substantially as described.

6. A circuit comprising a part upon which oscillations are impressed and another part for raising the tension by resonance, the latter part being supported on places of low electric density and having its outermost conducting boundaries arranged in surfaces of large radii of curvature, as set forth.

7. In apparatus for the transmission of electrical energy without wires a grounded circuit the outer conducting elements of which have a great aggregate area and are arranged in surfaces of large radii of curvature so as to permit the storing of a high charge at a small electric density and prevent loss through leakage, substantially as described.

8. A wireless transmitter comprising in combination a source of oscillations as a condenser, a primary exciting circuit and a secondary grounded and elevated conductor the outer conducting boundaries of which are in proximity to each other and arranged in surfaces of large radii of curvature, substantially as described.

9. In apparatus for the transmission of electrical energy without wires an elevated conductor or antenna having its outer high potential conducting or capacity elements arranged in proximity to each other and in surfaces of large radii of curvature so as to overcome the effect of the small radius of curvature of the individual elements and leakage of the charge, as set forth.

10. A grounded resonant transmitting circuit having its outer conducting boundaries arranged in surfaces of large radii of curvature in combination with an elevated terminal of great surface supported at points of low electric density, substantially as described.

NIKOLA TESLA.                

Witnesses: John C. Kerr, M. Lawson Dyer.

 
 
  Top | Previous Patent | Next Patent | Back To Contents  
 
METHOD OF AND APPARATUS FOR CONTROLLING MECHANISM OF MOVING VESSELS OR VEHICLES
 
 
  Previous Patent

Next Patent

 
 
 
The world's first wireless guided weapon patented by Nikola Tesla in 1897. Described in NIKOLA TESLA GUIDED WEAPONS & COMPUTER TECHNOLOGY The world's first wireless guided weapon patented by Nikola Tesla in 1897. Described in NIKOLA TESLA GUIDED WEAPONS & COMPUTER TECHNOLOGY

UNITED STATES PATENT OFFICE.

NIKOLA TESLA OF NEW YORK, N.Y.

METHOD OF AND APPARATUS FOR CONTROLLING MECHANISM OF MOVING VESSELS OR VEHICLES.

 

SPECIFICATION forming part of Letters Patent No. 613,808, dated November 8, 1898.

Application filed July 1, 1898. Serial No. 684,934. (No model)

To all whom it may concern: Be it known that I, Nikola Tesla a citizen of the United States, residing at New York, in the county and State of New York, have invented certain new and useful improvements in methods of and apparatus for controlling from a distance the operation of the propelling-engines, the steering apparatus, and other mechanism carried by moving bodies or floating vessels, of which the following is a specification, reference being had to the drawings accompanying and forming part of the same.

The problem for which the invention forming the subject of my present application affords a complete and practicable solution is that of controlling from a given point the operation of the propelling-engines, the steering apparatus, and other mechanism carried by a moving object, such as a boat or any floating vessel, whereby the movements and course of such body or vessel may be directed and controlled from a distance and any device carried by the same brought into action at any desired time. So far as I am aware the only attempts to solve this problem which have heretofore met with any measure of success have been made in connection with a certain class of vessels the machinery of which was governed by electric current conveyed to the controlling apparatus through a flexible conductor; but this system is subject to such obvious limitations as are imposed by the length, weight, and strength of the conductor which can be practically used, by the difficulty of maintaining with safety a high speed of the vessel or changing the direction of movement of the same with the desired rapidity, by the necessity for effecting the control from a point which is practically fixed, and by many well understood drawbacks inseparably connected with such a system. The plan which I have perfected involves none of these objections, for I am enabled by the use of my invention to employ any means of propulsion, to impart to the moving body or vessel the highest possible speed, to control the operation of its machinery and to direct its movements from either a fixed point or from body moving and changing its direction however rapidly, and to maintain this control over great distances without any artificial connections between the vessel and the apparatus governing its movements and without such restrictions as these must necessarily impose.

In a broad sense, then, my invention differs from all of those systems which provide for the control of the mechanism carried by a moving object and governing its motion in that I require no intermediate wires, cables, or other form of electrical or mechanical connection with the object save the natural media in space. I accomplish, nevertheless, similar results and in a much more practical manner by producing waves, impulses, or radiations which are received through the earth, water, or atmosphere by suitable apparatus on the moving body and cause the desired actions so long as the body remains within the active region or effective range of such currents, waves, impulses, or radiations.

The many and difficult requirements of the object here contemplated, involving peculiar means for transmitting to a considerable distance an influence capable of causing in a positive and reliable manner these actions, necessitated the designing of devices and apparatus of a novel kind in order to utilize to the best advantage various facts or results, which, either through my own investigations or those of others, have been rendered practically available.

As to that part of my invention which involves the production of suitable waves or variations and the conveying of the same to a remote receiving apparatus capable of being operated or controlled by their influence, it may be carried out in various ways, which are at the present time more or less understood. For example, I may pass through a conducting-path, preferably inclosing a large area, a rapidly-varying current and by electromagnetic induction of the same affect a circuit carried by the moving body. In this case the action at a given distance will be the stronger the larger the area inclosed by the conductor and the greater the rate of change of the current. If the latter were generated in the ordinary ways, the rate of change, and consequently the distance at which the action would be practically available for the present purpose, would be very small; but by adopting such means as I have devised-that is, either by passing through the conducting path currents of a specially-designed high-frequency alternator or, better still, those of a strongly-charged condenser-a very high rate of change may be obtained and the effective range of the influence thus extended over a vast area, and by carefully adjusting the circuit on the moving body so as to be in exact electromagnetic synchronism with the primary disturbances this influence may be utilized at great distances.

Another way to carry out my invention is to direct the currents or discharges of a high-frequency machine or condenser through a circuit one terminal of which is connected directly or inductively with the ground and the other to a body, preferably of large surface and at an elevation. In this case if the circuit on the moving body be similarly arranged or connected differences of potential on the terminals of the circuit either by conduction or electrostatic induction are produced and the same object is attained. Again, to secure the best action the receiving-circuit should be adjusted so as to be in electromagnetic synchronism with the primary source, as before; but in this instance it will be understood by those skilled in the art that if the number of vibrations per unit of time be the same the circuit should now have a length of conductor only one-half of that used in the former case.

Still another way is to pass the currents simply through the ground by connecting both the terminals of the source of high-frequency currents to earth at different and remote points and to utilize the currents spreading through the ground for affecting a receiving-circuit properly placed and adjusted. Again, in this instance if only one of the terminals of the receiving-circuit be connected to the ground, the other terminal being insulated, the adjustment as to synchronism with the source will require that under otherwise equal conditions the length of wire be half of that which would be used if both the terminals be connected or, generally, if the circuit be in the form of a closed loop or coil. Obviously also in the latter case the relative position of the receiving and transmitting circuits is of importance, whereas if the circuit be of the former hind-that is, openthe relative position of the circuits is, as a rule, of little or no consequence.

Finally, I may avail myself, in carrying out my invention, of electrical oscillations which do not follow any particular conducting-path, but propagate in straight lines through space, of rays, waves, pulses, or disturbances of any kind capable of bringing the mechanism of the moving body into action from a distance and at the will of the operator by their effect upon suitable controlling devices.

In the following detailed description I shall confine myself to an explanation of that method and apparatus only which I have found to be the most practical and effectual; but obviously my invention in its broad features is not limited to the special mode and appliances which I have devised and shall here describe.

In any eventthat is to say, whichever of the above or similar plans I may adoptand particularly when the influence exerted from a distance upon the receiving-circuit be too small to directly and reliably affect and actuate the controlling apparatus I employ auxiliary sensitive relays or, generally speaking, means capable of being brought into action by the feeblest influences in order to effect the control of the movements of the distant body with the least possible expenditure of energy and at the greatest practicable distance, thus extending the range and usefulness of my invention.

[A great variety of electrical and other devices, more or less suitable for the purpose of detecting and utilizing feeble actions, are now well known to scientific men and artisans, and need not be all enumerated here. Confining myself merely to the electrical as the most practicable of such means, the by far most sensitive device of this kind of which I have knowledge, is a form of luminous discharge which is produced in an exhausted globe under peculiar conditions described by me, and which I have designated as the rotating brush. This discharge is affected by the minutest variations of electrostatic potential or magnetic condition of bodies in its vicinity and may be utilized in a number of ways, as will easily suggest themselves to electricians, for the purposes here contemplated.] [This paragraph restored from the original patent application after deletion by the Patent Examiner. Ed.]

A great variety of electrical and other devices, more or less suitable for the purpose of detecting and utilizing feeble actions, are now well known to scientific men and artisans, and need not be all enumerated here. Confining myself merely to the electrical as the most practicable of such means, and referring only to those which, while not the most sensitive, are perhaps more readily available from the more general knowledge which exists regarding them, I may state that a contrivance may be used which has long been known and used as a lightning-arrester in connection with telephone-switchboards for operating annunciators and like devices, comprising a battery the poles of which are connected to two conducting-terminals separated by a minute thickness of dielectric. The electromotive force of the battery should be such as to strain the thin dielectric very nearly to the point of breaking down in order to increase the sensitiveness. When an electrical disturbance reaches a circuit so arranged and adjusted, additional strain is put upon the insulating-film, which gives way and allows the passage of a current which can be utilized to operate any form of circuit-controlling apparatus.

Again, another contrivance capable of being utilized in detecting feeble electrical effects consists of two conducting plates or terminals which have, preferably, wires of some length attached to them and are bridged by a mass of minute particles of metal or other conducting material. Normally these particles lying loose do not connect the metal plates; but under the influence of an electrical disturbance produced at a distance, evidently owing to electrostatic attraction, they are pressed firmly against each other, thus establishing a good electrical connection between the two terminals. This change of state may be made use of in a number of ways for the above purpose.

Still another modified device, which may be said to embody the features of both the former, is obtained by connecting the two conducting plates or terminals above referred to permanently with the poles of a battery which should be of very constant electromotive force. In this arrangement a distant electrical disturbance produces a twofold effect on the conducting particles and insulating-films between them. The former are brought nearer to each other in consequence of the sudden increase of electrostatic attraction, and the latter, owing to this, as well as by being reduced in thickness or in number, to are subjected to a much greater strain, which they are unable to withstand.

It will be obviously noted from the preceding that whichever of these or similar contrivances be used the sensitiveness and, what is often still more important, the reliability of operation is very materially increased by a close adjustment of the periods of vibration of the transmitting and receiving circuits, and, although such adjustment is in many eases unnecessary for the successful carrying out of my invention, I nevertheless make it a rule to bestow upon this feature the greatest possible care, not only because of the above-mentioned advantages, which are secured by the observance of the most favorable conditions in this respect, but also and chiefly with the object of preventing the receiving-circuit from being affected by waves or disturbances emanating from sources not under the control of the operator. The narrower the range of vibrations which are still capable of perceptibly affecting the receiving-circuit the safer will the latter be against extraneous disturbances. To secure the best result, it is. necessary, as is well known to experts, to construct the receiving circuit or that part of the same in which the vibration chiefly occurs so that it will have the highest possible self-induction and at the to same time the least possible resistance. In this manner I have demonstrated the practicability of providing a great number of such receiving-circuitsfifty or a hundred, or moreeach of which may be called up or brought into action whenever desired without the others being interfered with. This result makes it possible for one operator to direct simultaneously the movements of a number of bodies as well as to control the action of a number of devices located on the same body, each of which may have a distinct duty to fulfill. In the following description, however, I shall show a still further development in this directionnamely, how, by making use of merely one receiving-circuit, a great variety of devices may be actuated and any number of different functions performed at the will and command of the distant operator.

It should be stated in advance in regard to the sensitive devices above mentioned, which may be broadly considered as belonging to one class, in as much as the operation of all of them involves the breaking down of a minute thickness of highly-strained dielectric, that it is necessary to make some provision for automatically restoring to the dielectric its original unimpaired insulating qualities in order to enable the device to be used in successive operations. This is usually accomplished by a gentle tapping or vibration of the electrodes or particles or continuous rotation of the same; but in long experience with many forms of these devices I have found that such procedures, while suitable in simple and comparatively unimportant operations, as ordinary signaling, when it is merely required that the succeeding effects produced in the receiving-circuit should differ in regard to their relative duration only, in which case it is of little or no consequence if some of the individual effects be altered or incomplete or even entirely missed, do not yield satisfactory results in many instances, when it may be very important that the effects produced should all be exactly such as desired and that none should fail. To illustrate, let it be supposed that an official directing the movements of a vessel in the manner described should find it necessary to bring into action a special device on the latter or to perform a particular operation, perhaps of vital moment, at an instant’s notice and possibly when, by design or accident, the vessel itself or any mark indicating its presence is hidden from his view. In this instance a failure or defective action of any part of the apparatus might have disastrous consequences and such cases in which the sure and timely working of the machinery is of paramount importance may often present themselves in practice, and this consideration has impressed me with the necessity of doing away with the defects in the present devices and procedures and of producing an apparatus which while being sensitive will also be most reliable and positive in its action. In the arrangement hereinafter described these defects are overcome in a most satisfactory manner, enabling thousands of successive operations, in all respects alike, being performed by the controlling apparatus without a single irregularity or miss being recorded. For a better understanding of these and other details of the invention as I now carry them out I would refer to the accompanying drawings, in which

Figure 1 is a plan view of a vessel and mechanism within the same. Fig. 2 is a longitudinal section of the same, showing the interior mechanism in side elevation. Fig. 3 is a plan view, partially diagrammatical, of the vessel, apparatus, and circuit connections of the same. Fig. 4 is a plan view, on an enlarged scale, of a portion of the controlling mechanism. Fig. 5 is an end view of the same. Fig. 6 shows the same mechanism in side elevation. Fig. 7 is a side view of a detail of the mechanism. Fig. 8 is a central sectional view, on a larger scale, of a sensitive device forming part of the receiving-circuit, Fig. 9 is a diagrammatic illustration of the system in its preferred form. Fig. 10 is a view of the various mechanisms employed, but on a larger scale, and leaving out or indicating conventionally certain parts of well-understood character.

Referring to Figs. 1 and 2, A designates any type of vessel or vehicle which is capable of being propelled and directed, such as a boat, balloon, or carriage. It may be designed to carry in a suitable compartment B objects of any kind, according to the nature of the uses to which it is to be applied. The vesselin this instance a boatis provided with suitable propelling machinery, which is shown as comprising a screw-propeller C, secured to the shaft of an electromagnetic motor D, which derives its power from storage batteries E E E E. In addition to the propelling engine or motor the boat carries also a small steering motor F, the shaft of which is extended beyond its bearings and provided with a worm which meshes with a toothed wheel G. This latter is fixed to a sleeve b, freely movable on a vertical rod H, and is rotated in one or the other direction, according to the direction of rotation of the motor F.

The sleeve b on rod H is in gear, through the cog-wheels H’ and H”, with a spindle G, mounted in vertical bearings at the stern of the boat and carrying the rudder F’.

The apparatus by means of which the operation of both the propelling and steering mechanisms is controlled involves, primarily, a receiving-circuit, which for reasons before stated is preferably both adjusted and rendered sensitive to the influence of waves or impulses emanating from a remote source, the adjustment being so that the period of oscillation of the circuit is either the same as that of the source or a harmonic thereof.

The receiving-circuit proper (diagrammatically shown in Figs. 3 and 10) comprises a terminal E’, conductor C’, a sensitive device A’, and a conductor A”, leading to the ground conveniently through a connection to the metal keel B’ of the vessel. The terminal E’ should present a large conducting-surface and should be supported as high as practicable on a standard D’, which is shown as broken in Fig. 2; but such provisions are not always necessary. It is important to insulate very well the conductor C’ in whatever manner it be supported.

The circuit or path just referred to forms also a part of a local circuit, which latter includes a relay-magnet a and a battery a, the electromotive force of which is, as before explained, so determined that although the dielectric layers in the sensitive device A’ are subjected to a great strain, yet normally they withstand the strain and no appreciable current flows through the local circuit; but when an electrical disturbance reaches the circuit the dielectric films are broken down, the resistance of the device A’ is suddenly and greatly diminished, and a current traverses the relay-magnet A.

The particular sensitive device employed is shown in general views and in detail in Figs. 4, 6, 7, and 8. It consists of a metal cylinder c, with insulating-heads c, through which passes a central metallic rod c. A small quantity of grains d of conducting material, such as an oxidized metal, is placed in the cylinder. A metallic strip d, secured to an insulated post d, bears against the side of the cylinder c, connecting it with the conductor C’, forming one part of the circuit. The central rod c is connected to the frame of the instrument and so to the other part of the circuit through the forked metal arm e, the ends of which are fastened with two nuts to the projecting ends of the rod, by which means the cylinder c is supported.

In order to interrupt the flow of battery current which is started through the action of the sensitive device A’, special means are provided, which are as follows: The armature e of the magnet a, when attracted by the latter, closes a circuit containing a battery b and magnet f. The armature-lever f of this magnet is fixed to a rock-shaft f, to which is secured an anchor-escapement g, which controls the movements of a spindle g, driven by a clock-train K. The spindle g has fixed to it a disk g with four pins b, so that for each oscillation of the escapement g the spindle g is turned through one-quarter of a revolution. One of the spindles in the clock-train, as it, is geared so as to make one-half of a revolution for each quarter-revolution of spindle g. The end of the former spindle extends through the side of the frame and carries an eccentric cylinder h, which passes through a slot in a lever h, pivoted to the side of the frame. The forked arm e, which supports the cylinder c, is pivoted to the end of eccentric h, and the eccentric and said arm are connected by a spiral spring l. Two pins i i extend out from the lever h, and one of these is always in the path of a projection on arm e. They operate to prevent the turning of cylinder c with the spindle h and the eccentric. It will be evident that a half-revolution of the spindle h will wind up the spring i and at the same time raise or lower the lever h, and these parts are so arranged that just before the half-revolution of the spindle, is completed the pin i, in engagement with projection or stop-pin p, is withdrawn from its path, and the cylinder c, obeying the force of the spring i, is suddenly turned end for end, its motion being checked by the other pin i. The adjustment relatively to armature f of magnet f is furthermore so made that the pin i is withdrawn at the moment when the armature has nearly reached its extreme position in its approach toward the magnetthat is, when the lever l, which carries the armature f, almost touches the lower one of the two stops s s, Fig. 5which limits its motion in both directions.

The arrangement just described has been the result of long experimenting with the object of overcoming certain defects in devices of this kind, to which reference has been made before. These defects I have found to be due to many causes, as the unequal size, weight, and shape of the grains, the unequal pressure which results from this and from the manner in which the grains are usually agitated, the lack of uniformity in the conductivity of the surface of the particles owing to the varying thickness of the superficial oxidized layer, the varying condition of the gas or atmosphere in which the particles are immersed, and to certain deficiencies, well known to experts, of the transmitting apparatus as heretofore employed, which are in a large measure reduced by the use of my improved high-frequency coils. To do away with the defects in the sensitive device, I prepare the particles so that they will be in all respects as nearly alike as possible. They are manufactured by a special tool, insuring their equality in size, weight, and shape, and are then uniformly oxidized by placing them for a given time in an acid solution of predetermined strength. This secures equal conductivity of their surfaces and stops their further deterioration, thus preventing a change in the character of the gas in the space in which they are inclosed. I prefer not to rarefy the atmosphere within the sensitive device, as this has the effect of rendering the former less constant in regard to its dielectric properties, but merely secure an airtight inclosure of the particles and rigorous absence of moisture, which is fatal to satisfactory working.

The normal position of the cylinder c is vertical, and when turned in the manner described the grains in it are simply shifted from one end to the other; but inasmuch as they always fall through the same space and are subjected to the same agitation they are brought after each operation of the relay to precisely the same electrical condition and offer the same resistance to the flow of the battery-current until another impulse from afar reaches the receiving-circuit,

The relay-magnet a should be of such character as to respond to a very weak current and yet be positive in its action. To insure retraction of its armature e after the current has been established through the magnet f and interrupted by the inversion of the sensitive device e, a light rod k is supported in guides on the frame in position to be lifted by an extension k of the armature-lever l and to raise slightly the armature e. As a feeble current may normally flow through the sensitive device and the relay-magnet a, which would be sufficient to hold though not draw the armature down, it is well to observe this precaution.

The operation of the relay-magnet a and the consequent operation of the electromagnet f, as above described, are utilized to control the operation of the propelling-engine and the steering apparatus in the following manner: On the spindle g, which carries the escapement-disk g, Figs. 4 and 6, is a cylinder j of insulating material with a conducting plate of head at each end. From these two heads, respectively, contact plates or segments j j extend on diametrically opposite sides of the cylinder. The plate j is in electrical connection with the frame of the instrument through the head from which it extends, while insulated strips or brushes J J’ bear upon the free end or head of the cylinder and the periphery of the same, respectively. Three terminals are thus provided, one always in connection with plate j, the other always in connection with the plate j, and the third adapted to rest on the strips j and j in succession or upon the intermediate insulating-spaces, according to the position in which the commutator is brought by the clock-train and the anchor-escapement g.

K’ K”, Figs. 1, 3, and 10, are two relay-magnets conveniently placed in the rear of the propelling-engine. One terminal of a battery k is connected to one end of each of the relay-coils, the opposite terminal to the brush J’, and the opposite ends of the relay coils to the brush J and to the frame of the instrument, respectively. As a consequence of this arrangement either the relay K or K” will be energized as the brush J’ bears upon the plate j or j, respectively, or both relays will be inactive while the brush J’ bears upon an insulating-space between the plates j and j. While one relay, as K’, is energized, its armature closes a circuit through the motor F, which is rotated in a direction to throw the rudder to port. On the other hand, when relay K” is active another circuit through the motor F’ is closed, which reverses its direction of rotation and shifts the rudder to starboard. These circuits, however, are at the same time utilized for other purposes, and their course is, in part, through apparatus which I shall describe before tracing their course.

The fixed rod H carries an insulating disk or head L, Fig. 2, to the under side of which are secured six brushes, 12345, and 6, Fig. 3. The sleeve b, which surrounds the rod and is turned by the steering-motor E’, carries a disk L’, upon the upper face of which are two concentric circles of conducting contact-plates. Brushes 123, and 4 bear upon the inner circle of contacts, while the brushes 5 and 6 bear upon the enter circle of contacts. The outer circle of contacts comprises two long plates 7 and 8 on opposite sides of the disk and a series of shorter plates 910111213, and 14 in the front and rear. Flexible conductors l l connect the plates 7 and 8 with the terminals of the propelling-motor D, and the poles of the main battery E are connected to the brushes 5 and 6, respectively, so that while the rudder is straight or turned up to a certain angle to either side the current is conveyed through the brushes 5 and 6 and segments 7 and 8 to the propelling-motor D. The steering-motor F is also driven by current taken from the main battery E in the following manner: A conductor 15 from one pole of the battery leads to one of the commutator-brushes, and from the other brush runs a conductor 16 to one of the contacts of each relay K’ K”. When one of these relays, as K”, is active, it continues this circuit through a wire 19 through one field-coil or set of coils on the motor F and thence to the brush 1. In a similar manner when the other relay K’ is active the circuit is continued from wire 18 to through a wire 20, the second or reversing set of field-coils, and to brush 2.

Both brushes 1 and 2 at all times when the rudder is not turned more than about forty-five degrees to one side are in contact with a long conducting-plate 21, and one brush in any position of the rudder is always in contact with said plate, and the latter is connected by a flexible conductor 22 with the opposite pole of the main battery. Hence the motor F may always be caused to rotate in one direction whatever may be the position of the rudder, and may be caused to rotate in either direction whenever the position of the rudder is less than a predetermined angle, conveniently forty-five degrees from the center position. In order, however, to prevent the rudder from being turned too far in either direction, the isolated plate 23 is used. Any movement of the rudder beyond a predetermined limit brings this plate under one or the other of the brushes 1 2 and breaks the circuit of motor F, so that the rudder can be driven no farther in that direction, but, as will be understood, the apparatus is in condition to turn the rudder over to the other side. In like manner the circuit of the propelling-motor D is controlled through brushes 5 and 6 and the segments on the outer circle of contacts of head L. If the short segments on either side of the circle are insulated, the motor D will be stopped whenever one of the brushes 5 or 6 passes onto one of them from the larger segments 7 8.

It is important to add that on all contact points where a break occurs provision should be made to overcome the sparking and prevent the oscillation of electrical charges in the circuits, as sparks and oscillations may effect the sensitive device. It is this consideration chiefly which makes it advisable to use the two relays K’ K”, which otherwise might be dispensed with. They should be also placed as far as practicable from the sensitive device in order to guard the latter against any action of strong varying currents.

In addition to the mechanism described the vessel may carry any other devices or apparatus as might be required for accomplishing any special object of more or less importance. By way of illustration a small motor in is shown, Figs. 1 and 3, which conveniently serves for a number of purposes. This motor is shown connected in series with the armature of the steering-motor F, so that whenever either one of the circuits of the letter is closed through relays K’ K” the motor m is likewise rotated, but in all cases in the same direction. Its rotation is opposed by a spring m, so that in normal operation, owing to the fact that the circuits of motor F are closed but a short time, the lever m which is fastened to one of the wheels of clockwork M, with which the armature of the motor is geared, will move but a short distance and upon cessation of the current return to a stop P; but if the circuits of the motor F are closed and opened rapidly in succession, which operation leaves the rudder unaffected, then the lever m is moved to a greater angle, coming in contact with a metal plate n, and finally, if desired, with a post n. Upon the lever m coming in contact with plate n the current of the main battery passes either through one or other or both of the lights supported on standards q q, according to the position of brushes 3 and 4 relatively to the insulating segment 23; but since the head L, carrying the segments, is geared to the rudder the position of the latter is in a general way determined by observing the lights. Both of the lights may be colored, and by flashing them up whenever desired the operator may guide at night the vessel in its course. For such purposes also the standards r r are provided, which should be painted in lively colors, so as to be visible by day at great distances. By opening and closing the circuits of motor F a greater number of times, preferably determined beforehand, the lever m is brought in contact with post n, thus closing the circuit of the main battery through a device o and bringing the latter into action at the moment desired. By similar contrivances or such as will readily suggest themselves to mechanicians any number of different devices may be operated.

Referring now to Fig. 9, which illustrates diagrammatically the system as practiced when directing the movements of a boat, in this figure S designates any source of electrical disturbance or oscillations the generation of which is controlled by a suitable switch contained in box T. The handle of the switch is movable in one direction only and stops on four points t t u u, so that as the handle passes from stop to stop oscillations are produced by the source during a very short time interval. There are thus produced four disturbances during one revolution and the receiving-circuit is affected four times; but it will be understood from the foregoing description of the controlling devices on the vessel that the rudder will be moved twice, once to right and once to left. Now I preferably place the handle of the switch so that when it is arrested on points tthat is, to the right or left of the operatorhe is reminded that the vessel is being defected to the right or left from its course, by which means the control is facilitated. The normal positions of the handle are therefore at u u when the rudder is not acted upon, and it remains on the points u u only so long as necessary. Since, as before stated, the working of the apparatus is very sure, the operator is enabled to perform any such operations as provision is made for without even seeing the vessel.

The manner of using the apparatus and the operation of the several instrumentalities comprising the same is in detail as follows: Normally the plate L‘ is turned so that brush 2 rests upon the insulated segment 23 and brush 6 upon one of the insulated short segments in the rear of the circle. Under these conditions the rudder will be turned to starboard and the circuit of motor D, interrupted between brushes 5 and 6. At the same time only one of the circuits of motor Fthat controlled by relay Kis capable of being closed, since brush 2, which connects with the other, is out of contact with the long segment 21. Assuming now that it is desired to start the vessel and direct it to a given point, the handle T is turned from its normal position on point u to the point t on the switch-box. This sends out an electrical disturbance, which, passing through the receiving-circuit on the vessel, affects the sensitive device a and starts the flow of current through the local circuit, including said device, the relay a, and the battery a. This, as has been previously explained, turns the cylinder j and causes the brush J‘ to pass from insulation onto the contact j. The battery k” is thus closed through relay K”, and the latter closes that circuit of the motor F which, starting from plate 22, which is permanently connected with one pole of the main battery, is completed through the brush 1, the field of motor F, wire 19, the armature of relay K”, wire 16, the motor m, the brushes and commutator of motor F, and wire 15 to the opposite terminal of the battery E. Motor F is thus set in operation to shift the rudder to port; but the movement of plate L’ which follows brings the brush 6 back onto segment S and closes the circuit of the propelling-motor which starts the vessel. The motor F is permitted to run until the rudder has been turned sufficiently to steer the vessel in the desired direction, when the handle T is turned to the point u. This produces another action of the relay a and brush J’ is shifted onto insulation and both relays K’ and K” are inactive. The rudder remains in the position to which it has been shifted by the motor F. If it be then desired to shift it to starboard, or in the opposite direction to that in which it was last moved, the handle T is simply turned to point t and allowed to remain there until the motor F which is now operated by relay K’, the circuit of which is closed by strip J’ coming into contact with plate j, has done its work. The movement of handle T to the next point throws out both relays K’ and K” and the next movement causes a shifting of the rudder to port, and so on. Suppose, however, that after the rudder has been set at any angle to its middle position it be desired to shift it still farther in the same direction. In such case the handle is moved quickly over two points, so that the circuit which would move the rudder in the opposite direction is closed for too short a time interval to produce an appreciable effect and is allowed to rest on the third point until the rudder is shifted to the desired position, when the handle is moved to the next point, which again throws out both relays K’ and k”. It will be understood that if the handle be held for a sufficiently long time upon either point t or t the motor F will simply turn the plate L’ in one direction or the other until the circuits of motors D and F are broken. it is furthermore evident that one relay K’ or K” will always be operative to start the motor F.

As previously explained, the longest period of operation of which the motor F is capable under ordinary conditions of use does not permit the motor m to shift the arm m into contact with the plate n; but if the handle T be turned with a certain rapidity a series of current impulses will be directed through motor m; but as these tend to rotate the motor F’ in opposite directions they do not sensibly affect the latter, but act to rotate the motor m against the force of the coiled spring.

The invention which I have described will prove useful in many ways. Vessels or vehicles of any suitable kind may be used, as life, dispatch, or pilot boats or the like, or for carrying letters, packages, provisions, instruments, objects, or materials of any description, for establishing communication with inaccessible regions and exploring the conditions existing in the same, for killing or capturing whales or other animals of the sea, and for many other scientific, engineering, or commercial purposes; but the greatest value of my invention will result from its effect upon warfare and armaments, for by reason of its certain and unlimited destructiveness it will tend to bring about and maintain permanent peace among nations.

Having now described my invention, what I claim is

1. The improvement in the art of controlling the movements and operation of a vessel or vehicle herein described, which consists in producing waves or disturbances which are conveyed to the vessel by the natural media, actuating thereby suitable apparatus on the vessel and effecting the control of the propelling-engine, the steering and other mechanism by the operation of the said apparatus, as set forth.

2. The improvement in the art of controlling the movements and operation of a vessel or vehicle, herein described, which consists in establishing a region of waves or disturbances, and actuating by their influence exerted at a distance the devices on said vessel or vehicle, which control the propelling, steering and other mechanism thereon, as set forth.

3. The improvement in the art of controlling the movements and operation of vessel or vehicle, herein described, which consists in establishing a region of electrical waves or disturbances, and actuating by their influence, exerted at a distance, the devices on said vessel or vehicle, which control the propelling, steering and other mechanism thereon, as set forth.

4. The improvement in the art of controlling the movements and operation of a vessel or vehicle, herein described, which consists in providing on the vessel a circuit controlling the propelling, steering and other mechanism, adjusting or rendering such circuit sensitive to waves or disturbances of a definite character, establishing a region of such waves or disturbances, and rendering by their means the controlling-circuit active or inactive, as set forth.

5. The combination with a source of electrical waves or disturbances of a moving vessel or vehicle, and a mechanism thereon for propelling, steering or operating the same, and a controlling apparatus adapted to be actuated by the influence of the said waves or disturbances at a distance from the source, as set forth.

6. The combination with a source of electrical waves or disturbances of a moving vessel or vehicle, mechanism for propelling, steering or operating the same, a circuit and means therein for controlling said mechanism, and means for rendering said circuit active or inactive through the influence of the said waves or disturbances exerted at a distance from the source, as set forth.

7. The combination with a source of electrical waves or disturbances and means for starting and stopping the same, of a vessel or vehicle, propelling and steering mechanism carried thereby, a circuit containing or connected with means for controlling the operation of said mechanism and adjusted or rendered sensitive to the waves or disturbances of the source, as set forth.

8. The combination with a source of electrical waves or disturbances, and means for starting and stopping the operation of the same. of a vessel or vehicle, propelling and steering mechanism carried thereby, local circuits controlling said mechanisms, a circuit sensitive to the waves or disturbances of the source and means therein adapted to control the said local circuits, as and for the purpose set forth.

9. The sensitive device herein described comprising in construction a receptacle containing a material such as particles of oxidized metal forming a part of the circuit, and means for tuning the same end for end when the material has been rendered active by the passage through it of an electric discharge, as set forth.

10. The sensitive device herein described, comprising in combination a receptacle containing material such as particles of oxidized metal forming a part of an electric circuit, an electromagnet in said circuit, and devices controlled thereby for turning the receptacle end for end when said magnet is energized, as set forth.

11. The sensitive device herein described, comprising in combination a receptacle containing a material such as particles of oxidized metal forming part of an electric circuit, a motor for rotating the receptacle an electromagnet in circuit with the material, and an escapement controlled by said magnet and adapted to permit a half-revolution of the receptacle when the said magnet is energized, as set forth.

12. The combination with A movable body or vehicle, of a propelling-motor, a steering-motor and electrical contacts carried by a moving portion of the steering mechanism, and adapted in certain positions of the latter to interrupt the circuit of the propelling-motor, a local circuit and means connected therewith for controlling the steering-motor, and a circuit controlling the local circuit and means for rendering said controlling-circuit sensitive to the influence of electrical waves or disturbances exerted at a distance from their source, as set forth.

13. The combination with the steering-motor, a local circuit for directing current through the same in opposite directions, a controlling-circuit rendered sensitive to the influence of electric waves or disturbances exerted at a distance from their source, a motor in circuit with the steering-motor but adapted to run always in the same direction, and a local circuit or circuits controlled by said motor, as set forth.

NIKOLA TESLA.

Witnesses: Raphaël Netter George Scherff.

 

 

 
SYSTEM OF TRANSMISSION OF ELECTRICAL ENERGY
 
 
  Previous Patent

Next Patent

 
 
 

UNITED STATES PATENT OFFICE.

NIKOLA TESLA OF NEW YORK, N. Y.

SYSTEM OF TRANSMISSION OF ELECTRICAL ENERGY.   SPECIFICATION forming part of Letters Patent No. 645,576, dated March 20, 1900. Application filed September 2, 1897.  Serial No. 650,343. (No model.)

To all whom it may concern: Be it known that I, NIKOLA TESLA, a citizen of the United States, residing at New York, in the county and State of New York, have invented certain new and useful improvements in Systems of Transmission of Electrical Energy, of which the following is a specification, reference being had to the drawing accompanying and forming a part of the same.

It has been well known heretofore that by rarefying the air inclosed in a vessel its insulating properties are impaired to such an extent that it becomes what may be considered as a true conductor, although one of admittedly very high resistance.  The practical information in this regard has been derived from observations necessarily limited in their scope by the character of the apparatus or means heretofore known and the quality of the electrical effects producible thereby.  Thus it has been shown by William Crookes in his classical researches, which have so far served as the chief source of knowledge of this subject, that all gasses behave as excellent insulators until rarefied to a point corresponding to a barometric pressure of about seventy-five millimeters, and even at this very low pressure the discharge of a high-tension induction-coil passes through only a part of the attenuated gas in the form of a luminous thread or arc, a still further and considerable diminution of the pressure being required to render the entire mass of the gas inclosed in a vessel conducting.  While this is true in every particular so long as electromotive or current impulses such as are obtainable with ordinary forms of apparatus are employed, I have found that neither the general behavior of the gases nor the known relations between electrical conductivity and barometric pressure are in conformity with these observations when impulses are used such as are producible by methods and apparatus described by me and which have peculiar and hitherto unobserved properties and are of effective electromotive force, measuring many hundred thousands or millions of volts.  Through the continuous perfection of these methods and apparatus and the investigation of the actions of these current impulses I have been led to the discovery of certain highly-important useful facts which have hitherto been unknown.  Among these and bearing directly upon the subject of my present application are the following: First, that atmospheric or other gases, even under normal pressure, when they are known to behave as perfect insulators, are in a large measure deprived of their dielectric properties by being subjected to the influence of electromotive impulses of the character and magnitude I have referred to and assume conducting and other qualities which have been so far observed only in gases greatly attenuated or heated to a high temperature, and, second, that the conductivity imparted to the air or gases increases very rapidly both with the augmentation of the applied electrical pressure and with the degree of rarefaction, the law in this latter respect being, however, quite different from that heretofore established.  In illustration of these facts a few observations, which I have made with apparatus devised for the purposes here contemplated, may be cited.  For example, a conductor or terminal, to which impulses such as those here considered are supplied, but which is otherwise insulated in space and is remote from any conducting-bodies, is surrounded by a luminous flame-like brush or discharge often covering many hundreds or even as much as several thousands of square feet of surface, this striking phenomenon clearly attesting the high degree of conductivity which the atmosphere attains under the influence of the immense electrical stresses to which it is subjected.  This influence is however, not confined to that portion of the atmosphere which is discernible by the eye as luminous and which, as has been the case in some instances actually observed, may fill the space within a spherical or cylindrical envelop of a diameter of sixty feet or more, but reaches out to far remote regions, the insulating qualities of the air being, as I have ascertained, still sensibly impaired at a distance many hundred times that through which the luminous discharge projects from the terminal and in all probability much farther.  The distance extends with the increase of the electromotive force of the impulses, with the diminution of the density of the atmosphere, with the elevation of the active terminal above the ground, and also, apparently, in slight measure, with the degree of moisture contained in the air.  I have likewise observed that this region of decidedly-noticeable influence continuously enlarges as time goes on, and the discharge is allowed to pass not unlike a conflagration which slowly spreads, this being possibly due to the gradual electrification or ionization of the air or to the formation of less insulating gaseous compounds.  It is, furthermore, a fact that such discharges of extreme tensions, approximating those of lightning, manifest a marked tendency to pass upward away from the ground, which may be due to electrostatic repulsion, or possibly to slight heating and consequent rising of the electrified or ionized air.  These latter observations make it appear probable that a discharge of this character allowed to escape into the atmosphere from a terminal maintained at a great height will gradually leak through and establish a good conducting-path to more elevated and better conducting air strata, a process which possibly takes place in silent lightning discharges frequently witnessed on hot and sultry days.  It will be apparent to what an extent the conductivity imparted to the air is enhanced by the increase of the electromotive force of the impulses when it is stated that in some instances the area covered by the flame discharge mentioned was enlarged more than sixfold by an augmentation of the electrical pressure, amounting scarcely to more than fifty per cent.  As to the influence of rarefaction upon the electric conductivity imparted to the gases it is noteworthy that, whereas the atmospheric or other gases begin ordinarily to manifest this quality at something like seventy-five millimeters barometric pressure with the impulses of excessive electromotive force to which I have referred, the conductivity, as already pointed out, begins even at normal pressure and continuously increases with the degree of tenuity of the gas, so that at, say, one hundred and thirty millimeters pressure, when the gases are known to be still nearly perfect insulators for ordinary electromotive forces, they behave toward electromotive impulses of several millions of volts, like excellent conductors, as though they were rarefied to a much higher degree.  By the discovery of these facts and the perfection of means for producing in a safe, economical, and thoroughly-practicable manner current impulses of the character described it becomes possible to transmit through easily-accessible and only moderately-rarefied strata of the atmosphere electrical energy not merely in insignificant quantities, such as are suitable for the operation of delicate instruments and like purposes, but also in quantities suitable for industrial uses on a large scale up to practically any amount and, according to all the experimental evidence I have obtained, to any terrestrial distance.  To conduce to a better understanding or this method of transmission of energy and to distinguish it clearly, both in its theoretical aspect and in its practical bearing; from other known modes of transmission, it is useful to state that all previous efforts made by myself and others for transmitting electrical energy to a distance without the use of metallic conductors, chiefly with the object of actuating sensitive receivers, have been based, in so far as the atmosphere is concerned, upon those qualities which it possesses by virtue of its being an excellent insulator, and all these attempts would have been obviously recognized as ineffective if not entirely futile in the presence of a conducting atmosphere or medium.  The utilization of any conducting properties of the air for purposes of transmission of energy has been hitherto out of the question in the absence of apparatus suitable for meeting the many and difficult requirements, although it has long been known or surmised that atmospheric strata at great altitudes—say fifteen or more miles above sea-level—are, or should be, in a measure, conducting; but assuming even that the indispensable means should have been produced then still a difficulty, which in the present state of the mechanical arts must be considered as insuperable, would remain—namely, that of maintaining terminals at elevations of fifteen miles or more above the level of the sea.  Through my discoveries before mentioned and the production of adequate means the necessity of maintaining terminals at such inaccessible altitudes is obviated and a practical method and system of transmission of energy through the natural media is afforded essentially different from all those available up to the present time and possessing, moreover, this important practical advantage, that whereas in all such methods or systems heretofore used or proposed but a minute fraction of the total energy expended by the generator or transmitter was recoverable in a distant receiving apparatus by my method and appliances it is possible to utilize by far the greater portion of the energy of the source and in any locality however remote from the same.

Expressed briefly, my present invention, based upon these discoveries, consists then in producing at one point an electrical pressure of such character and magnitude as to cause thereby a current to traverse elevated strata of the air between the point of generation and a distant point to which the energy is to be received and utilized.

In the accompanying drawing a general arrangement of apparatus is diagrammatically illustrated such as I contemplate employing in the carrying out of my invention on an industrial scale—as, for instance, for lighting distant cities or districts from places where cheap power is obtainable. 

Referring to the drawing, A is a coil, generally of many turns and of a very large diameter, wound in spiral form either about a magnetic core or not, as may be found necessary, C is a second coil, formed of a conductor of much larger section and smaller . . .

. . . 

. . . even thousands of miles, with terminals not more than thirty to thirty-five thousand feet above the level of the sea, and even this comparatively-small elevation will be required chiefly for reasons of economy, and, if desired, it may be considerably reduced, since by such means as have been described practically any potential that is desired may be obtained, the currents through the air strata may be rendered very small, whereby the loss in the transmission may be reduced.

It will be understood that the transmitting as well as the receiving coils, transformers, or other apparatus may be in some cases moveable–as, for example, when they are carried by vessels floating in the air or by ships at sea. In such a case, or generally, the connection of one of the terminals of the high-tension coil or coils to the ground may not be permanent, but may be intermittently or inductively established, and any such or similar modifications I shall consider as within the scope of my invention. While the description here given contemplates chiefly a method and system of energy transmission to a distance through the natural media for industrial purposes, the principles which I have herein disclosed and the apparatus which I have shown will obviously have many other valuable uses–as, for instance, when it is desirable to transmit intelligible messages to great distances, or to illuminate upper strata of the air, or to produce, designedly, any useful changes in the condition of the atmosphere, or to manufacture from the gases of the same products, as nitric acid, fertilizing compounds, or the like, by the action of such current impulses, for all of which and for many other valuable purposes they are eminently suitable, and I do not wish to limit myself in this respect. Obviously, also, certain features of my invention here disclosed will be useful as disconnected from the method itself–as, for example, in other systems of energy transmission, for whatever purpose they may be intended, the transmitting and receiving transformers arranged and connected as illustrated, the feature of a transmitting and receiving coil or conductor, both connected to the ground and to an elevated-terminal and adjusted so as to vibrate in synchronism, the proportioning of such conductors or coils, as above specified, the feature of a receiving-transformer, with its primary connected to earth and to an elevated terminal and having the operative devices in its secondary, and other features or particulars, such as have been described in this specification or will readily suggest themselves by a perusal of the same.

I do not claim in this application a transformer for developing or converting currents of high potential in the form herewith shown and described and with the two coils connected together, as and for the purpose set forth, having made these improvements the subject of a p:\tent granted to me November 2, 1897, No. 593,138, nor do I claim herein the apparatus employed in carrying out the method of this application when such apparatus is specially constructed find arranged for securing the particular object sought in the present invention, as these last-named features are made the subject of an application filed as a division of this application on February 19,1900, Serial No. 5,780.

What I now claim is– 1. The method hereinbefore described of transmitting electrical energy through the natural media, which consists in producing at a generating-station a very high electrical pressure, causing thereby a propagation or flow of electrical energy; by conduction, through the earth and the air strata, and collecting or receiving at a. distant point the electrical energy so propagated or caused to flow.

2. The method hereinbefore described of transmitting electrical energy, which consists in producing at a generating-station a very high electrical pressure, conducting the cur- S rent caused thereby to earth and to a terminal at an elevation at which the atmosphere serves as a conductor therefor and collecting the current by a second elevated terminal at a distance from the first.

3. The method hereinbefore described of transmitting electrical energy through the natural media, which consists in producing between the earth and a generator-terminal elevated above the same, at a generating-station, a sufficiently-high electromotive force to render elevated air strata conducting, causing thereby a propagation or flow of electrical energy, by conduction, through the air strata, and collecting or receiving at a point distant from the generating-station the electrical energy so propagated or caused to flow.

4. The method hereinbefore described of transmitting electrical energy through the natural media, which consists in producing between the earth and a generator-terminal elevated above the same, at a generating-station, a sufficiently-high electromotive force to render the air strata at or near the elevated terminal conducting, causing thereby a propagation or flow of electrical energy, by conduction, through the air strata, and collecting or receiving at a point distant from the generating-station the electrical energy so propagated or caused to flow.

5. The method hereinbefore described of transmitting electrical energy through the natural media, which consists in producing between the earth and a generator-terminal elevated above the same, at a generating-station, electrical impulses of a sufficiently-high electromotive force to render elevated air strata conducting, causing thereby current impulses to pass, by conduction, through the air strata, and collecting or receiving at a point distant from the generating-station, the energy of the current impulses by means of a circuit synchronized with the impulses.

6. The method hereinbefore described of . . . 

. . .

9. The method hereinbefore described of transmitting electrical energy through the natural media, which consists in generating current impulses of relatively-low electromotive force at a generating-station, utilizing such impulses to energize the primary of a transformer, generating by means of such primary circuit impulses in a secondary surrounding by the primary and connected to the earth and to an elevated terminal, of sufficiently-high electromotive force to render elevated air strata conducting, causing thereby impulses to be propagated through the air strata, collecting or receiving the energy of such impulses, at a point distant from the generating-station, by means of a receiving circuit connected to the earth and to an elevated terminal, and utilizing the energy so received to energize a secondary circuit of low potential surrounding the receiving-circuit.

NIKOLA TESLA

Witnesses: M. Lawson Dyer, G. W. Martling.

 
 
ELECTRICAL TRANSFORMER Transformer for High-Frequency Lighting
 
 
  Tesla Patents TOC

Next Patent

 
 
 
 

 
 

UNITED STATES PATENT OFFICE.

NIKOLA TESLA OF NEW YORK, N. Y.

Electrical Transformer.   SPECIFICATION forming part of Letters Patent No. 593,138, dated November 2, 1897. Application filed March 20, 1897.  Serial No. 629,453. (No model.)

To all whom, it may concern: Be it known that I, NIKOLA TESLA, a citizen of the United States, residing at New York, in the county and State of New York, have invented certain new and useful Improvements in Electrical Transformers, of which the following is a specification, reference being had to the drawings accompanying and forming a part of the same.

The present application is based upon an apparatus which I have devised and employed for to purpose of developing electrical currents of high potential, which transformers or induction-coils constructed on the principles heretofore followed in the manufacture of such instruments are wholly incapable of producing or practically utilizing, at least without serious liability of the destruction of the apparatus itself and danger to persons approaching or handling it.

The improvement involves a novel form of transformer or induction-coil and a system for the transmission of electrical energy by means of the same in which the energy of the source is raised to a much higher potential for transmission over the line than has ever been practically employed heretofore, and the apparatus is constructed with reference to the production of such a potential and so as to be not only free from the danger of injury from the destruction of insulation, but safe to handle.  To this end I construct an induction-coil or transformer in which the primary and secondary coils are wound or arranged in such manner that the convolutions of the conductor of the latter will be farther removed from the primary as the liability of injury from the effects of potential increases, the terminal or point of highest potential being the most remote, and so that between adjacent convolutions there shall be the least possible difference of potential.

The type of coil in which the last-named features are present is the flat spiral, and this form I generally employ, winding the primary on the outside of the secondary and taking off the current from the latter at the center or inner end of the spiral.  I may depart from or vary this form, however, in the particulars hereinafter specified.

In constructing my improved transformers I employ a length of secondary which is approximately one-quarter of the wave length of the electrical disturbance in the circuit including the secondary coil, based on the velocity of propagation of electrical disturbances through such circuit, or, in general, of such length that the potential at the terminal of the secondary which is the more remote from the primary shall be at its maximum. In using these coils I connect one end of the secondary, or that in proximity to the primary, to earth, and in order to more effectively provide against injury to persons or to the apparatus I also connect it with the primary.

In the accompanying drawings, Figure 1 is a diagram illustrating the plan of winding and connection which I employ in constructing my improved coils and the manner of using them for the transmission of energy over long distances.  Fig. 2 is a side elevation, and Fig. 3 a side elevation and part section, of modified forms of induction-coil made in accordance with my invention.

A designates a core, which may be magnetic when so desired.

B is the secondary coil, wound upon said core in generally spiral form.

C is the primary, which is wound around in proximity to the secondary.  One terminal of the latter will be at the center of the spiral coil, and from this the current is taken to line or for other purposes. The other terminal of the secondary is connected to earth and preferably also to the primary.

When two coils are used in a transmission system in which the currents are raised to a high potential and then reconverted to a lower potential, the receiving-transformer will be constructed and connected in the same manner as the first-that is to say, the inner or center end of what corresponds to the secondary of the first will be connected to line and the other end to earth and to the local circuit or that which corresponds to the primary of the first.  In such case also the line-wire should be supported in such manner as to avoid loss by the current jumping from line to objects in its vicinity and in contact with earth–as, for example, by means of long insulators, mounted, preferably, on metal poles so that in case of leakage from the line it will pass harmlessly to earth.  In Fig. 1 where such a system is illustrated, a dynamo G is conveniently represented as supplying the primary of the sending or “step-up” transformer, and lamps II and motors K are shown as connected with the corresponding circuit of the receiving or “step-down” transformer.

Instead of winding the coils in the form of a flat spiral the secondary may be wound on a support in the shape of a frustum of a cone and the primary wound around its base, as shown in Fig. 2.

In practice for apparatus designed for ordinary usage the coil is preferably constructed on the plan illustrated in Fig. 3.  In this figure L L are spools of insulating material upon which the secondary is wound-in the present case, however, in two sections, so as to constitute really two secondaries.  The primary C is a spirally-wound flat strip surrounding both secondaries B.

The inner terminals of the secondaries are led out through tubes of insulating material M, while the other or outside terminals are connected with the primary.

The length of the secondary coil B or of each secondary coil when two are used, as in Fig. 3, is, as before stated, approximately one-quarter of the wave length of the electrical disturbance in the secondary circuit, based on the velocity of propagation of the electrical disturbance through the coil itself and the circuit with which it is designed to be used-that is to say, if the rate at which a current traverses the circuit, including the coil, be one hundred and eighty-five thousand miles per second, then a frequency of nine hundred and twenty-five per second would maintain nine hundred and twenty-five stationary waves in a circuit one hundred and eighty-five thousand miles long, and each wave length would be two hundred miles in length.  For such a frequency I should use a secondary fifty miles in length, so that at one terminal the potential would be zero and at the other maximum.

Coils of the character herein described have several important advantages.  As the potential increases with the number of turns the difference of potential between adjacent turns is comparatively small, and hence a very high potential, impracticable with ordinary coils, may be successfully maintained.

As the secondary is electrically connected with the primary the latter will be at substantially the same potential as the adjacent portions of the secondary, so that there will be no tendency for sparks to jump from one to the other and destroy the insulation.  Moreover, as both primary and secondary are grounded and the line-terminal of the coil carried and protected to a point remote from the apparatus the danger of a discharge through the body of a person handling or approaching the apparatus is reduced to a minimum.

I am aware that an induction-coil in the form of a flat spiral is not in itself new, and this I do not claim; but

What I claim as my invention is—

1. A transformer for developing or converting currents of high potential, comprising a primary and secondary coil, one terminal of the secondary being electrically connected with the primary; and with earth when the transformer is in use, as set forth.

2. A transformer for developing or converting currents of high potential, comprising a primary and secondary wound in the form of a flat spiral, the end of the secondary adjacent to the primary being electrically connected therewith and with earth when the transformer is in use, as set forth.

3. A transformer for developing or converting currents of high potential comprising a primary and secondary wound in the form of a spiral, the secondary being inside of, and surrounded by, the convolutions of the primary and having its adjacent terminal electrically connected therewith and with earth when the transformer is in use, as set forth.

4. In a system for the conversion and transmission of electrical energy, the combination of two transformers, one for raising, the other for lowering, the potential of the currents, the said transformers having one terminal of the longer or fine-wire coils connected to line, and the other terminals adjacent to the shorter coils electrically connected therewith and to the earth, as set forth.

NIKOLA TESLA.

 

     Witnesses: M. LAWSON DYER, G. W. MARTLING.

 
 

 

 
VALVULAR CONDUIT The Tesla Gas Turbine Patent
 
 
  Previous Patent

Next Patent

 
 
 

Valvular Conduit

 

Valvular Conduit

U.S. Patent No. 1,329,559

To all whom it may concern: Be it known that I, Nikola Tesla, a citizen of the United States, residing at New York, in the county and State of New York, have invented certain new and useful Improvements in Valvular Conduits, of which the following is a full, clear, and exact description.

In most of the machinery universally employed for the development, transmission and transformation of mechanical energy, fluid impulses are made to pass, more or less freely, through suitable channels or conduits in one direction while their return is effectively checked or entirely prevented. This function is generally performed by devices designated as valves, comprising carefully fitted members the precise relative movements of which are essential to the efficient and reliable operation of the apparatus. The necessity of, and absolute dependence on these, limits the machine in many respects, detracting from its practical value and adding greatly to its cost of manufacture and maintenance. As a rule the valve is a delicate contrivance, very liable to wear and get out of order and thereby imperil ponderous, complex and costly mechanisms and, moreover, it fails to meet the requirements when the impulses are extremely sudden or rapid in succession and the fluid is highly heated or corrosive.

Though these and other correlated facts were known to the very earliest pioneers in the science and art of mechanics, no remedy has yet been found or proposed to date so far as I am aware, and I believe that I am the first to discover or invent any means, which permit the performance of the above function without the use of moving parts, and which it is the object of this application to describe.

Briefly expressed, the advance I have achieved consists in the employment of a peculiar channel or conduit characterized by valvular action.

The invention can be embodied in many constructions greatly varied in detail, but for the explanation of the underlying principle it may be broadly stated that the interior of the conduit is provided with enlargements, recesses, projections, baffles or buckets which, while offering virtually no resistance to the passage of the fluid in one direction, other than surface friction, constitute an almost impassable barrier to its flow in the opposite sense by reason of the more or less sudden expansions, contractions, deflections, reversals of direction, stops and starts and attendant rapidly succeeding transformations of the pressure and velocity energies.

For the full and complete disclosure of the device and of its mode of action reference is made to the accompanying drawings in which Figure 1 is a horizontal projection of such a valvular conduit with the top plate removed. Figure 2 is side view of the same in elevation. Figure 3 is a diagram illustrative of the application of the device to a fluid propelling machine such as, a reciprocating pump or compressor, and Figure 4 is a plan showing the manner in which the invention is, or may be used, to operate a fluid propelled rotary engine or turbine. Referring to Figure 1, 1 is a casing of metal or other suitable material which may be cast, milled or pressed from sheet in the desired form. From its side-walls extended alternatively projections terminating in buckets 2 which, to facilitate manufacture are congruent and spaced at equal distances, but need not be. In addition to these there are independent partitions 3 which are deemed of advantage and the purpose of which will be made clear. Nipples 4 and 5, one at each end, are provided for pipe connection. The bottom is solid and the upper or open side is closed by a fitting plate 6 as shown in Fig. 2. When desired any number of such pieces may be joined in series, thus making up a valvular conduit of such length as the circumstances may require.

In elucidation of the mode of operation let it be assumed that the medium under pressure be admitted at 5. Evidently, its approximate path will be as indicated by the dotted line 7, which is nearly straight, that is to say, if the channel be of adequate cross-section, the fluid will encounter a very small resistance and pass through freely and undisturbed, at least to a degree. Not so if the entrance be at the opposite end 4. In this case the flow will not be smooth and continues, but intermittent, the fluid being quickly deflected and reversed in direction, set in whirling motion, brought to rest and again accelerated, these processes following one another in rapid succession. The partitions 3 serve to direct the stream upon the buckets and to intensify the actions causing violent surges and eddies which interfere very materially with the flow through the conduit. It will be readily observed that the resistance offered to the passage of the medium will be considerable even if it be under constant pressure, but the impediments will be of full effect only when it is supplied in pulses and, more especially, when the same are extremely sudden and of high frequency. In order to bring the fluid masses to rest and to high velocity in short intervals of time energy must be furnished at a rate which is unattainable, the result being that the impulse cannot penetrate very far before it subsides and gives rise to movement in the opposite direction. The device not only acts as a hinderment to the bodily return of particles but also, in a measure, as a check to the propagation of a disturbance through the medium. Its efficacy is chiefly determined; first, by the magnitude of the ratio of the two resistances offered to disturbed and to undisturbed flow, respectively, in the directions from 4 to 5 and from 5 to 4, in each individual element of the conduit; second, by the number of complete cycles of action taking place in a given length of the valvular channel and, third, by the character of the impulses themselves. A fair idea may be gained from simple theoretical considerations.

Examining more closely the mode of operation it will be seen that, in passing from one to the next bucket in the direction of disturbed flow, the fluid undergoes two complete reversals or deflections through 180 degrees while it suffers only two small deviations from about 10 to 20 degrees when moving in the opposite sense. In each case the loss of head will be proportionate to a hydraulic coefficient dependent on the angle of deflection from which it follows that, for the same velocity, the ratio of the two resistances will be as that of the two coefficients. The theoretical value of this ratio may be 200 or more, but must be taken as appreciably less although the surface friction too is greater in the direction of disturbed flow. In order to keep it as large as possible, sharp bends should be avoided, for these will add to both resistances and reduce the efficiency. Whenever practicable, the piece should be straight; the next best is the circular form.

That the peculiar function of such a conduit is enhanced by increasing the number of buckets or elements and, consequently, cyclic processes in a given length is an obvious conclusion, but there is no direct proportionality because the successive actions diminish in intensity. Definite limits, however, are set constructively and otherwise to the number of elements per unit length of the channel, and the most economical design can only be evolved through long experience.

Quite apart from any mechanical features of the device the character of the impulses has a decided influence on its performance and the best results will be secured, when there are produced at 4, sudden variations of pressure in relatively long intervals, while a constant pressure is maintained at 5. Such is the case in one of its most valuable industrial applications which will be specifically described.

In order to conduce to a better understanding, reference may first be made to Fig. 3 which illustrates another special use and in which 8 is a piston fixed to a shaft 9 and fitting freely in a cylinder 10. The latter is closed at both ends by flanged heads 11 and 12 having sleeves or stuffing boxes 13 and 14 for the shaft. Connection between the two compartments, 15 and 16, of the cylinder is established through a valvular conduit and each of the heads is similarly equipped. For the sake of simplicity these devices are diagrammatically shown, the solid arrows indicating the direction of undisturbed flow. An extension of the shaft 9 carries a second piston 17 accurately ground to and sliding easily in a cylinder 18 closed at the ends by plates and sleeves as usual. Both piston and cylinder are provided with inlet and outlet ports marked, respectively, 19 and 20. This arrangement is familiar, being representative of a prime mover of my invention, termed “mechanical oscillator”, with which it is practicable to vibrate a system of considerable weight many thousand times per minute.

Suppose now that such rapid oscillations are imparted by this or other means to the piston 8. Bearing in mind the proceeding, the operation of the apparatus will be understood at a glance. While moving in the direction of the solid arrow, from 12 to 11, the piston 8 will compress the air or other medium in the compartment 16 and expel it from the same, the devices in the piston and head 11 acting, respectively, as closed and open valves. During the movement of the piston in the opposite direction, from 11 to 12, the medium which has meanwhile filled the chamber 15 will be transferred to compartment 16, egress being prevented by the device in head 12 and that in the piston allowing free passage. These processes will be repeated in very quick succession. If the nipples 4 and 5 are put in communication with independent reservoirs, the oscillations of the piston 8 will result in a compression of the air at 4 and rarefaction of the same at 5. Obviously, the valvular channels being turned the other way, as indicated by dotted lines in the lower part of the figure, the opposite will take place. The devices in the piston have been shown merely by way of suggestion and can be dispensed with. Each of the chambers 15 and 16 being connected to two conduits as illustrated, the vibrations of a solid piston as 8 will have the same effect and the machine will then be a double acting pump or compressor. It is likewise unessential that the medium should be admitted to the cylinder through such devices for in certain instances ports, alternately closed and opened by the piston, may serve the purpose. As a matter of course, this novel method of propelling fluids can be extended to multistage working in which case a number of pistons will be employed, preferably on the same shaft and of different diameters in conformity with well established principles of mechanical design. In this way any desired ratio of compression or degree of rarefaction may be attained.

Fig. 4 exemplifies a particularly valuable application of the invention to which reference has been made above. The drawing shows in vertical cross section a turbine which may be of any type but is in this instance one invented and described by me and supposed to be familiar to engineers. Suffice it to state that the rotor 21 of the same is composed of flat plates which are set in motion through the adhesive and viscous action of the working fluid, entering the system tangentially at the periphery and leaving it at the center. Such a machine is a thermodynamic transformer of an activity surpassing by far that of any other prime mover, it being demonstrated in practice that each single disk of the rotor is capable of performing as much work as a whole bucket-wheel. Besides, a number of other advantages, equally important, make it especially adapted for operation as an internal combustion motor. This may be done in may ways, but the simplest and most direct plan of which I am aware is the one illustrated here. Referring again to the drawing, the upper part of the turbine casing 22 has bolted to it a separate casting 23, the central cavity 24 of which forms the combustion chamber. To prevent injury through excessive heating a jacket 25 may be used, or else water injected, and when these means are objectionable recourse may be had to air cooling, this all the more readily as very high temperatures are practicable. The top of casting 23 is closed by a plate 26 with a sparking or hot wire plug 27 and in its sides are screwed two valvular conduits communicating with the central chamber 24. One of these is, normally, open to the atmosphere while the other connects to a source of fuel supply as a gas main 28. The bottom of the combustion chamber terminates in a suitable nozzle 29 which consists of a separate piece of heat resisting material. To regulate the influx of the explosion constituents and secure the proper mixture of air and gas conduits are equipped, respectively, with valves 30 and 31. The exhaust openings 32 of the rotor should be in communication with a ventilator, preferably carried on the same shaft and of any suitable construction. Its use, however, while advantageous, is not indispensable the suction produced by the turbine rotor itself being, in some cases at least, sufficient to insure proper working. This detail is omitted from the drawing as unessential to the understanding.

But a few words will be needed to make clear the mode of operation. The air valve 30 being open and sparking established across terminals 27, the gas is turned on slowly until the mixture in the chamber 24 reaches the critical state and is ignited. Both the conduits behaving, with respect to efflux, as closed valves, the products of combustion rush out through the nozzle 29 acquiring still greater velocity by expansion and, imparting their momentum to the rotor 21, start it from rest. Upon the subsidence of the explosion the pressure in the chamber sinks below the atmosphere owing to the pumping action of the rotor or ventilator and new air and gas is permitted to enter, cleaning the cavity and channels and making up a fresh mixture which is detonated as before, and so on, the successive impulses of the working fluid producing an almost continuous rotary effort. After a short lapse of time the chamber becomes heated to such a degree that the ignition device may be shut off without disturbing the established regime. This manner of starting the turbine involves the employment of an unduly large combustion chamber which is not commendable from the economic point of view, for not only does it entail increased heat losses but the explosions cannot be made to follow one another with such rapidity as would be desirable to insure the best valvular action. When the chamber is small an auxiliary means for starting, as compressed air, may be resorted to and a very quick succession of explosions can then be obtained. The frequency will be the greater the stronger the suction, and may, under certain conditions, reach hundreds and even thousands per second. It scarcely need be stated that instead of one several explosion chambers may be used for cooling purposes and also to increase the number of active pulses and the output of the machine.

Apparatus as illustrated in Fig. 4 presents the advantages of extreme simplicity, cheapness and reliability, there being no compressor, buckets or troublesome valve mechanism. It also permits, with the addition of certain well known accessories, the use of any kind of fuel and thus meets the pressing necessity of a self-contained, powerful, light and compact internal combustion motor for general work. When the attainment of the highest efficiency is the chief object, as in machines of large size, the explosive constituents will be supplied under high pressure and provision made for maintaining a vacuum at the exhaust. Such arrangements are quite familiar and lend themselves so easily to this improvement that an enlargement on this subject is deemed unnecessary.

The foregoing description will readily suggest to experts modifications both as regards construction and application of the device and I do not which to limit myself in these respects. The broad underlying idea of the invention is to permit the free passage of a fluid through a channel in the direction of the flow and to prevent its return through friction and mass resistance, thus enabling the performance of valve functions without any moving parts and thereby extending the scope and usefulness of an immense variety of mechanical appliances.

I do not claim the methods of an apparatus for the propulsion of fluids and thermodynamic transformation of energy herein disclosed, as these will be made subjects of separate applications.

I am aware that asymmetrical conduits have been constructed and their use proposed in connection with engines, but these have no similarity either in their construction or manner of employment with my valvular conduit. They were incapable of acting as valves proper, for the fluid was merely arrested in pockets and deflected through 90 degrees, this result having at best only 25% of the efficiency attained in the construction herein described. In the conduit I have designed the fluid, as stated above, is deflected in each cycle through 360 degrees, and a co-efficient approximating 200 can be obtained so that the device acts as a slightly leaking valve, and for that reason the term “valvular” has been given to it in contrast to asymmetrical conduits, as heretofore proposed, which were not valvular in action, but merely asymmetrical as to resistance.

Furthermore, the conduits heretofore constructed were intended to be used in connection with slowly reciprocating machines, in which case enormous conduit-length would be necessary, all this rendering them devoid of practical value. By the use of an effective valvular conduit, as herein described, and the employment of pulses of very high frequency, I am able to condense my apparatus and secure such perfect action as to dispense successfully with valves in numerous forms of reciprocating and rotary engines.

The high efficiency of the device, irrespective of the character of the pulses, is due to two causes: first, rapid reversal of direction of flow and, second, great relative velocity of the colliding fluid columns. As will be readily seen each bucket causes a deviation through an angle of 180 degrees, and another change of 180 degrees occurs in each of the spaces between two adjacent buckets. That is to say, from the time the fluid enters or leaves one of the recesses to its passage into, or exit from, the one following a complete cycle, or deflection through 360 degrees, is effected. Observe now that the velocity is but slightly reduced in the reversal so that the incoming and deflected fluid columns meet with a relative speed, twice that of the flow, and the energy of their impact is four times greater than with a deflection of only 90 degrees, as might be obtained with pockets such as have been employed in asymmetrical conduits for various purposes. The fact is, however, that in these such deflection is not secured, the pockets remaining filled with comparatively quiescent fluid and the latter following a winding path of least resistance between the obstacles interposed. In such conduits the action cannot be characterized as “valvular” because some of the fluid can pass almost unimpeded in a direction opposite to the normal flow. In my construction, as above indicated, the resistance in the reverse may be 200 times that in the normal direction. Owing to this a comparatively very small number of buckets or elements is required for checking the fluid. To give a concrete idea, suppose that the leak from the first element is represented by the fraction 1/X, then after the nth bucket is traversed, only a quantity (1/X)n will escape and it is evident that X need not be a large number to secure a nearly perfect valvular action.

What I claim is: 1. A valvular conduit having interior walls of such conformation as to permit the free passage of fluid through it in the direction of flow, but to subject it to rapid reversals of direction when impelled in the opposite sense and thereby to prevent its return by friction and mass resistance.

2. A valvular conduit composed of a closed passageway having recesses in its walls so formed as to permit a fluid to pass freely through it in the direction of flow, but to subject it to rapid reversals of direction when impelled in an opposite sense and thereby interpose friction and mass resistance to the return passage of the same.

3. A valvular conduit composed of a tube or passageway with rigid interior walls formed with a series of recesses or pockets with surfaces that reverse a fluid tending to flow in one direction therein and thereby check or prevent flow of the fluid in that direction.

4. A valvular conduit with rigid interior walls of such character as to offer substantially no obstacle to the passage through it of fluid impulses in one direction, but to subject the fluid to rapid reversals of direction and thereby oppose and check impulses in the opposite sense.

5. A valvular conduit with rigid interior walls formed to permit fluid impulses under pressure to pass freely through it in one direction, but to subject them to rapid reversals of direction through 360 degrees and thereby check their progress when impelled in the opposite sense.

6. A valvular conduit with rigid interior walls which permit fluid impulses to flow through it freely in one direction, formed at a plurality of points to reverse such fluid impulses when impelled in the opposite direction and check their flow.

7. A valvular conduit with rigid interior walls having pockets or recesses, and transversely inclined intermediate baffles to permit the free passage of fluid impulses in one direction but to deflect and check them when impelled in the opposite direction.

In testimony whereof I affix my signature

Nikola Tesla

 

 

 
COIL FOR ELECTROMAGNETS
 
 
  Previous Patent

Next Patent

 
 
 

UNITED STATES PATENT OFFICENIKOLA TESLA, OF NEW YORK, N. Y. COIL FOR ELECTRO-MAGNETS.

SPECIFICATION forming part of Letters Patent No. 512,340, dated January 9, 1894.

Application filed July 7, 1893. Serial No. 479,804. (No model.)

To all whom it may concern: Be it known that I, NIKOLA TESLA, a citizen of the United States, residing at New York, in the county and State of New York, have invented certain new and useful improvements in Coils for Electro-Magnets and other apparatus, of which the following is a specification, reference being had to the drawings accompanying and forming a part of the same.

In electric apparatus or systems in, which alternating currents are employed the self-induction of the coils or conductors may, and, in fact, in many cases does operate disadvantageously by giving rise to false currents which often reduce what is known as the commercial efficiency of the apparatus composing the system or operate detrimentally in other respects. The effects of self-induction, above referred to, are known to be neutralized by proportioning to a proper degree the capacity of the circuit with relation to the self-induction and frequency of the currents. This has been accomplished heretofore by the use of condensers constructed and applied as separate instruments. My present invention has for its object to avoid the employment of condensers, which are expensive, cumbersome and difficult to maintain in perfect condition, and to so construct the coils themselves as to accomplish the same ultimate object. I would here state that by the term coils I desire to include generally helices, solenoids, or, in fact, any conductor the different parts of which by the requirements of its application or use are brought into such relations with each other as to materially increase the self-induction. I have found that in every coil there exists a certain relation between its self-induction and capacity that permits, a current of given frequency and potential to pass through it with no other opposition than that of ohmic resistance, or, in other words, as though it possessed no self-induction. This is due to the mutual relations existing between the special character of the current and the self-induction and capacity of the coil, the latter quantity being just capable of neutralizing the self-induction for that frequency. It is well known that the higher the frequency or potential difference of the current the smaller the capacity required to counteract the self-induction; hence, in any coil, however small the capacity, it may be sufficient for the purpose stated if the proper conditions in other respects be secured in the ordinary coils the difference of potential between adjacent turns or spirals is very small, so that while they are in a sense condensers, they possess but very small capacity and the relations between the two quantities, self-induction and capacity, are not such as under any ordinary conditions satisfy the requirements herein contemplated, because the capacity relatively to the self-induction is very small. In order to attain my object and to properly increase the capacity of any given coil, I wind it in such way as to secure a greater difference of potential between its adjacent turns or convolutions, and since the energy stored in the coil-considering the latter as a condenser, is proportionate to the square of the potential difference between its adjacent convolutions, it is evident that I may in this way secure by the proper disposition of these convolutions I greatly increased capacity for a given increase in potential difference between the turns. I have illustrated diagrammatically in the accompanying drawings the general nature of the plan which I adopt for carrying out this invention. Figure 1 is a diagram of a coil wound in the ordinary manner. Fig. 2 is a diagram of a winding designed to secure the objects of my invention. Let Fig. 1, designate any given coil the spires or convolutions of which are wound upon and insulated from each other. Let it be assumed that the terminals of this coil show a potential difference of one hundred volts, and that there are one thousand convolutions: then considering any two contiguous points on adjacent convolutions let it be assumed that there will exist between them a potential difference of one-tenth of a volt. If now, as shown in Fig. 2, a conductor B be wound parallel with the conductor A and insulated from it, and the end of A be connected with the starting point of B, the aggregate length of the two conductor being such that the assumed number of convolutions or turns is the same, vis, one thousand, then the potential difference between any to adjacent points in A and B will be fifty volts, and as the capacity effect is proportionate to the square of this difference, the energy stored in the coil as a whole will now be two hundred and fifty thousand as great. Following out this principle, I may wind any given coil either in whole or in part, not only in the specific manner herein illustrated, but in a great variety of ways, well known in the art, so as to secure between adjacent convolutions such potential difference as will give the proper capacity to neutralize the self-induction for any given current that may be employed. Capacity secured in this particular way possesses an additional advantage in that it is evenly distributed, a consideration of the greatest importance in many cases, and the results, both as to efficiency and economy, are the more readily and easily obtained as the size of the coils, the potential difference or frequency of the currents are increased. Coils composed of independent strands or conductors wound side by side and connected in series are not In themselves new, and I do not regard a more detailed description of the same necessary. But heretofore, so far as I am aware, the objects in view have been essentially different from mine, and the results which I obtain even if an incident to such forms of winding have not been appreciated or taken advantage of. In carrying out my invention it is to be observed that certain facts are well understood by those skilled in the art, viz: the relations of capacity, self-induction, and the frequency and potential difference of the current. What capacity, therefore, in any given case it is desirable to obtain and what special winding will secure it, are readily determinable from the other factors which are known. What I claim as my invention is 1. A coil for electric apparatus the adjacent convolutions of which form parts of the circuit between which there exists a potential difference sufficient to secure in the coil a capacity capable of neutralizing its self-induction, as hereinbefore described. 2. A coil composed of contiguous or adjacent insulated conductors electrically connected in series and having a potential difference of such value as to give to the coil as a whole, a capacity sufficient to neutralize its self-induction, as set forth.

NIKOLA TESLA.

   Witnesses: ROBT. F. GAYLORD, PARKER W. PAGE.

 

from TwenstyFirstCenturyBooks Website

APPARATUS FOR TRANSMITTING ELECTRICAL ENERGY
 
  Previous Patent

Next Patent

 
 
 

UNITED STATES PATENT OFFICE.

NIKOLA TESLA, OF NEW YORK, N. Y.

APPARATUS FOR TRANSMITTING ELECTRICAL ENERGY

1,119,732.                             Specification of Letters Patent.           Patented Dec. 1, 1914.

Application filed January 18. 1902, Serial No. 90,245. Renewed May 4, 1907. Serial No. 371,817.

To all whom it may concern: Be it known that I, NIKOLA TESLA, a citizen of the United States, residing at the borough of Manhattan, in the city, county, and State of New York, have invented certain new and useful Improvements in Apparatus for Transmitting Electrical Energy, of which the following is a specification, reference being had to the drawing accompanying and forming a part of the same.

In endeavoring to adapt currents or discharges of very high tension to various valuable uses, as the distribution of energy through wires from central plants to distant places of consumption, or the transmission of powerful disturbances to great distances, through the natural or non-artificial media. I have encountered difficulties in confining considerable amounts of electricity to the conductors and preventing its leakage over their supports, or its escape into the ambient air, which always takes place when the electric surface density reaches a certain value.

The intensity of the effect of a transmitting circuit with a free or elevated terminal is proportionate to the quantity of electricity displaced which is determined by the product of the capacity of the circuit, the pressure, and the frequency of the currents employed. To produce an electrical movement of the required magnitude it is desirable to charge the terminal as highly as possible, for while a great quantity of electricity may also be displaced by a large capacity charged to low pressure, there are disadvantages met with in many cases when the former is made too large. These are due to the fact that, an increase of the capacity entails a lowering of the frequency of the impulses or discharges and a diminution of the energy of vibration. This will be understood when it is borne in mind, that a circuit with a large capacity behaves us a slackspring, whereas one with a small capacity acts a stiff spring, vibrating more vigorously. Therefore, in order to attain the highest possible frequency, which for certain purposes is advantageous and, apart from that, to develop the greatest energy in such a transmitting circuit, I employ a terminal of relatively small capacity, which I charge to as high a pressure as practicable. To accomplish this result I have found it imperative to so construct the elevated conductor, that its outer surface, on which the electrical charge chiefly accumulates, has itself a large radius of curvature, or is composed of separate elements which, irrespective of their own radius of curvature, are arranged in close proximity to each so other and so, that the outside ideal surface enveloping them is of a large radius. Evidently, the smaller the radius of curvature the greater, for a given electric displacement, will be the surface-density and, consequently the lower the limiting pressure to which the terminal may he charged without electricity escaping into the air. Such a terminal secure to an insulating support entering more or less into its interior, and I likewise connect the circuit to it inside or, generally, at points where the electric density is small. This plan of constructing and supporting a highly charged conductor I have found to be of great practical importance, and it may be usefully applied in many ways.

Referring to the accompanying drawing, the figure is a view in elevation and part section of an improved free terminal and circuit of large surface with supporting structure and generating apparatus.

The terminal D consists of a suitably shaped metallic frame, in this case a ring of nearly circular cross section, which is covered with half spherical metal plates P P, thus constituting a very large conducting surface, smooth on all places where the electric charge principally accumulates. The frame is carried by a strong platform expressly provided for safety appliances, instruments of observation, etc., which in turn rests on insulating supports F F. These should penetrate far into the hollow space formed by the terminal, and if the electric density at the points where they are bolted to the frame is still considerable, they may specially protected by conducting hoods as H.

A part of the improvements which form the subject of this specification, the transmitting circuit, in its general features, is identical with that described and claimed in my original Patents Nos. 645,576 and 649,621. The circuit comprises a coil A which is in close inductive relation with a primary C, and one end of which is connected to a ground-plate E, while its other end is led through a separate self-induction coil B and a metallic cylinder B’ to the terminal D.  The connection to the latter should always be made at, or near the center, in order to secure a symmetrical distribution of the current, as otherwise, when the frequency is very high and the flow of large volume, the performance of the apparatus might be impaired. The primary C may be excited in any desired manner, from a suitable source of currents G, which may be an alternator or condenser, the important requirement being that the resonant condition is established, that is to say, that the terminal D is charged to the maximum pressure developed in the circuit, as I have specified in my original patents before referred to. The adjustments should be made with particular care when the transmitter is one of great power, not only on account of economy, but also in order to avoid danger. I have shown to that it is practicable to produce in a resonating circuit as E A B B’ D immense electrical activities, measured by tens and even hundreds of thousands of horse-power, and in such a case, if the points of maximum pressure should be shifted below the terminal D, along coil B, a ball of fire might break out and destroy the support F or anything else in the way. For the better appreciation of the nature of this danger it should he stated, that the destructive action may take place with inconceivable violence. This will cease to be surprising when it is borne in mind, that the entire energy accumulated in the excited circuit, instead of requiring, as under normal working conditions, one quarter of the period or more for its transformation from static to kinetic form, may spend itself in an incomparably smaller interval of time, at a rate of many millions of horse power. The accident is apt to occur when, the transmitting circuit being strongly excited, the impressed oscillations upon it are caused, in any manner more or less sudden, to be more rapid than the free oscillations. It is therefore advisable to begin the adjustments with feeble and somewhat slower impressed oscillations. strengthening and quickening them gradually, until the apparatus has been brought under perfect control. To increase the safety, I provide on a convenient place, preferably on terminal D, one or more elements or plates either of somewhat smaller radius of curvature or protruding more or less beyond the others (in which case they maybe of larger radius of curvature) so that, should the pressure rise to a value, beyond which it is not desired to go, the powerful discharge may dart out there and lose itself harmlessly in air. Such a plate, performing a function similar to that of a safety valve on a high pressure reservoir, is indicated at V.

Still further extending the principles underlying my invention, special reference is made to coil B and conductor B’. The latter is in the form of a cylinder with smooth or polished surface of a radius much larger than that of the half spherical elements P P, and widens out at the bottom into a hood H, which should be slotted to avoid loss by eddy currents and the purpose of which will be clear from the foregoing. The coil B is wound on a frame or drum D1 of insulating material, with its turns close together. I have discovered that when so wound the effect of the small radius of curvature of the wire itself is overcome and the coil behaves as a conductor of large radius of curvature, corresponding to that of the drum. This feature is of considerable practical importance and is applicable not only in this special instance, but generally. For example, such plates at P P of terminal D, though preferably of large radius of curvature, need not be necessarily so for provided only that the individual plates or elements of a high potential conductor or terminal are arranged in proximity to each other and with their outer boundaries along an ideal symmetrical enveloping surface of a large radius of curvature, the advantages of the invention will be more or less fully realized. The lower end of the coil B—which, if desired, may be extended up to the terminal D should be somewhat below the uppermost turn of coil A. This, I find, lessens the tendency of the charge to break out from the wire connecting both and to pass along the support F’.

Having described my invention, I claim: 1. As a means for producing great electrical activities a resonant circuit having its outer conducting boundaries, which are charged to a high potential, arranged in surfaces of large radii of curvature so as to prevent leakage of the oscillating charge, substantially as set forth.

2. In apparatus for the transmission of electrical energy a circuit connected to ground and to an elevated terminal and having its outer conducting boundaries, which are subject to high tension, arranged in surfaces of large radii of curvature substantially as, and for the purpose described.

3. In a plant for the transmission of electrical energy without wires, in combination with a primary or exciting circuit a secondary connected to ground and to an elevated terminal and having its outer conducting boundaries, which are charged to a high potential, arranged in surfaces of large radii of curvature for the purpose of preventing leakage and loss of energy, substantially as set forth.

4. As a means for transmItting electrical energy to a distance through the natural media a grounded resonant circuit, comprising, a part upon which oscillations are impressed and another for raising the tension, having its outer conducting boundaries on which a high tension charge accumulates arranged in surfaces of large radii of curvature, substantially as described.

5. The means for producing excessive electric potentials consisting of a primary exciting circuit and a resonant secondary having its outer conducting elements which are subject to high tension arranged in proximity to each other and in surface of large of curvature so as to prevent leakage of the charge and attendant lowering of potential, substantially as described.

6. A circuit comprising a part upon which oscillations are impressed and another part for raising the tension by resonance, the latter part being supported on places of low electric density and having its outermost conducting boundaries arranged in surfaces of large radii of curvature, as set forth.

7. In apparatus for the transmission of electrical energy without wires a grounded circuit the outer conducting elements of which have a great aggregate area and are arranged in surfaces of large radii of curvature so as to permit the storing of a high charge at a small electric density and prevent loss through leakage, substantially as described.

8. A wireless transmitter comprising in combination a source of oscillations as a condenser, a primary exciting circuit and a secondary grounded and elevated conductor the outer conducting boundaries of which are in proximity to each other and arranged in surfaces of large radii of curvature, substantially as described.

9. In apparatus for the transmission of electrical energy without wires an elevated conductor or antenna having its outer high potential conducting or capacity elements arranged in proximity to each other and in surfaces of large radii of curvature so as to overcome the effect of the small radius of curvature of the individual elements and leakage of the charge, as set forth.

10. A grounded resonant transmitting circuit having its outer conducting boundaries arranged in surfaces of large radii of curvature in combination with an elevated terminal of great surface supported at points of low electric density, substantially as described.

NIKOLA TESLA.                

Witnesses: John C. Kerr, M. Lawson Dyer.

EST SECRET

 
Tesla’s first radiant energy receiver
by Bruce A. Perreault Brooklyn Eagle July 10, 1932 Nikola Tesla states: I have harnessed the cosmic rays and caused them to operate a motive device. Cosmic ray investigation is a subject that is very close to me. I was the first to discover these rays and I naturally feel toward them as I would toward my own flesh and blood. I have advanced a theory of the cosmic rays and at every step of my investigations I have found it completely justified. The attractive features of the cosmic rays is their constancy. They shower down on us throughout the whole 24 hours, and if a plant is developed to use their power it will not require devices for storing energy as would be necessary with devices using wind, tide or sunlight. All of my investigations seem to point to the conclusion that they are small particles, each carrying so small a charge that we are justified in calling them neutrons. They move with great velocity, exceeding that of light. More than 25 years ago I began my efforts to harness the cosmic rays and I can now state that I have succeeded in operating a motive device by means of them. I will tell you in the most general way, the cosmic ray ionizes the air, setting free many charges ions and electrons. These charges are captured in a condenser which is made to discharge through the circuit of the motor. I have hopes of building my motor on a large scale, but circumstances have not been favorable to carrying out my plan.

DEVICE TO HARNESS FREE COSMIC ENERGY CLAIMED BY NIKOLA TESLA

“This new power for the driving of the world’s machinery will be derived from the energy which operates the universe, the cosmic energy, whose central source for the earth is the sun and which is everywhere present in unlimited quantities.” diagram of Tesla's first radiant energy receiverThis is a diagram of Tesla’s first radiant energy receiver. It stored static electricity obtained from the air and converted it to a usable form. Tesla’s invention is a simple version of T.H. Moray’s device. Moray’s device used a unique rectifier (RE-valve) to efficiently capture the static electricity from the surrounding air. Moray’s oscillator tubes (magnetron transducers) utilized this high-voltage energy to generate an internal secondary “cold” fusion reaction. Stick an antenna up in the air, the higher the better, and wire it to one side of a capacitor, the other going to a good earth ground, and the potential difference will then charge the capacitor. Connect across the capacitor some sort of switching device so that it can be discharged at rhythmic intervals, and you have an oscillating electric output. T.H. Moray simply expanded on Tesla’s idea to use high-voltage to create ionic oscillation. Nikola Tesla free energy concept was patented in 1901 as an “Apparatus for the Utilization of Radiant Energy.” The patent refers to “the sun, as well as other sources of radiant energy, like cosmic rays,” that the device works at night is explained in terms of the night-time availability of cosmic rays. Tesla also refers to the ground as “a vast reservoir of negative electricity.” Tesla was fascinated by radiant energy and its free energy possibilities. He called the Crooke’s radiometer, a device which has vanes that spin in a vacuum when exposed to radiant energy “a beautiful invention.” He believed that it would become possible to harness energy directly by “connecting to the very wheel-work of nature.” On his 76th birthday at his yearly ritual press conference, Tesla announced a “cosmic-ray motor” when asked if it was more powerful than the Crooke’s radiometer, he answered, “thousands of times more powerful.” In 1901 Nikola Tesla was one the first to identify “radiant energy.” Tesla says that the source of this energy is our Sun. He concluded that the Sun emits small particles, each carrying so small of a charge, that they move with great velocity, exceeding that of light. Tesla further states that these particles are the neutron particles. Tesla believed that these neutron particles were responsible for all radioactive reactions. Radiant matter is in tune with these neutron particles. Radiant matter is simply a re-transmitter of energy from one state to another.

HOW HIS RADIANT ENERGY RECEIVER WORKED

From the electric Potential that exists between the elevated plate (plus) and the ground (minus), energy builds up in the capacitor, and, after “a suitable time interval,” the accumulated energy will “manifest itself in a powerful discharge” that can do work. The capacitor, says Tesla, should be “of considerable electrostatic capacity,” and its dielectric made of “the best quality mica, for it has to withstand potentials that could rupture a weaker dielectric.” harvesting free energy with deviceTesla gives various options for the switching device. One is a rotary switch that resembles a Tesla circuit controller, another is an electrostatic device consisting of two very light, membranous conductors suspended in a vacuum. These sense the energy build-up in the capacitor, one charging positive, the other negative, and, at a certain charge level, are attracted, touch, and thus fire the capacitor. Tesla also mentions another switching device consisting of a minute air gap or weak dielectric film that breaks down suddenly when a certain potential is reached. Tesla received two patents for this radiant energy device; U.S. Patent No. 685,957 – Apparatus for the Utilization of Radiant Energy and U.S. Patent No. 685,958 – Method of Utilizing Radiant Energy. Both these patents were filed on March 21, 1901 and granted on November 5, 1901. In these patents he explains: “The sun, as well as other sources of radiant energy throw off minute particles of matter positively electrified, which, impinging upon the upper plate, communicate continuously an electrical charge to the same. The opposite terminal of the condenser being connected to ground, which may be considered as a vast reservoir of negative electricity, a feeble current flows continuously into the condenser and inasmuch as the particles are …charged to a very high potential, this charging of the condenser may continue, as I have actually observed, almost indefinitely, even to the point of rupturing the dielectric.”

THE EARTH’S ELECTROSTATIC CHARGE

Tesla’s intent was to condense the energy trapped between the earth and its upper atmosphere and to transform it into an electric current. He pictured the sun as an immense ball of electricity, positively charged with a potential of some 200 billion volts. The earth, on the other hand, is charged with negative electricity. The tremendous electrical force between these two bodies constituted, at least in part, what he called cosmic energy. It varied from night to day and from season to season but it is always present. The positive particles are stopped at the ionosphere and between it and the negative charges in the ground, a distance of 60 miles, there is a large difference of voltage – something on the order of 360,000 volts. With the gases of the atmosphere acting as an insulator between these two opposite stores of electrical charges, the region between the ground and the edge of space traps a great deal of energy. Despite the large size of the planet, it is electrically like a capacitor which keeps positive and negative charges apart by using the air as a non-conducting material as an insulator. The earth has a charge of 96,500 coulombs. With a potential of 360,000 volts, the earth constitutes a capacitor of .25 farads (farads = coulombs/volts). If the formula for calculating the energy stored in a capacitor (E =1/2CV2) is applied to the earth, it turns out that the ambient medium contains 1.6 x 1011 joules or 4.5 megawatt-hours of electrical energy. In order to utilize this high-voltage energy you must do two things — make an energy sink and then devise a way of making the “sink” oscillate.

“ZERO POINT ENERGY?”

Such a “sink” has to be at a lower energy state than the surrounding medium and, for the energy to continually flow into it, the energy must be continually pumped out of it. Additionally, this “sink” must maintain a lower energy state while meeting the power requirements of the load attached to it. Electrical energy, watt-seconds, is a product of volts x amps x seconds. Because the period of oscillation does not change, either voltage or current has to be the variable in this system’s energy equation. Bifilar wound coils are used in the system because a bifilar wound coil maximizes the voltage difference between its turns, the current is then minimized. A coil in our system, then, will be set into oscillation at its resonant frequency by an external power source. During the “zero-point” portion of its cycle the coil will appear as one plate of a capacitor. As the voltage across the coil increases, the amount of charge it can siphon will increase. The energy that is taken into the coil through the small energy window (zero-point), call it what you will, appears to be the key to the success of this system. It is at this zero-point where energy is condensed into positive and negative components of current. When energy escapes from the “sink” the magnetic field collapses and a strong magnetic quake is created in it’s wake. A properly tuned system can capture and convert radiant energy in such a prescribed arrangement.

ENERGY DIRECTLY FROM THE ATOM

The radiant energy system is a self-oscillating capacitive system. Once it is set into oscillation, very little power is expended in keeping it going. Because it is an electrostatic oscillating system, only a small amount of charge moves through the system per cycle, that is, the coulomb per seconds = amps are low. If the charge is used at a low rate, the energy stored in the system will be turned into heat at a slow rate enabling the oscillations to continue for a long period of time. Tesla’s “COIL FOR ELECTRO MAGNETS,” patent #512,340 is a very special coil design because, unlike an ordinary coil made by turning wire on a tube form, this one uses two wires laid next to each other on a form but with the end of the first one connected to the beginning of the second one. In this patent Tesla explains that the double coil will store many times the energy of a conventional coil.[1] Measurements of two coils of the same size and with the same number of turns, one with a single, the other with a bifilar winding, show differences in voltage gain. These bifilar Tesla’s coils can be explained solely on the basis of their electrical activity. A bifilar coil is capable of holding more charge than a single wound coil. When operated at resonance, the distributed capacitance of the bifilar coil is able to overcome the counter – electromotive force (e.m.f.) normal to coils, inductive reactance. Because of the electrical activity, a bifilar coil does not work against itself in the form of a counter – e.m.f., the potential across the coil quickly builds to a high value. The difference between the turns becomes great enough that the energy is practically all potential, at this point, the system becomes an electrostatic oscillator. Minimal work is done in my radiant energy system due to the absence of wasted displacement currents. As small heat losses occur, oscillations are maintained by surplus charge generated by atomic catalytic reactions, energy is siphoned from the kinetic moments of these charges. Very low energy expenditure allows power delivery to an electrical load over an extended time period without an external fuel supply. After an initial input of energy from an outside source, the radiant energy electrical generator will operate as a very efficient device. By reviewing history it is understandable why some inventions are not commercialized. It is economics, not science, that is the main factor. It will be remembered that alternating current was opposed by powerful financiers in Tesla’s time. Michael Pupin, noted in his autobiography: “…captains of industry…who were afraid that they would have to scrap some of their direct current apparatus and the plants for manufacturing it, if the alternating current system received any support. A most un-American attitude…but ignorance and false notions prevailed in the early nineties, because the captains of electrical industries paid small attention to highly trained scientists.”[2]

PHILADELPHIA PUBLIC LEDGER NOVEMBER 2, 1933 TESLA ‘HARNESSES’ FREE COSMIC ENERGY

Inventor announces discovery to displace fuel in driving machinery. Calls Sun main source. A principle by which power for driving machinery of the world may be developed from the cosmic energy which operates the universe, has been discovered by Nikola Tesla, noted physicist and inventor of scientific devices, he announced today. This principle, which taps a source of power described as “everywhere present in unlimited quantities” and which may be transmitted by wire or wireless from central plants to any part of the globe, will eliminate the need of coal, oil, gas or any other of the common fuels, he said. Dr. Tesla in a statement today at his hotel indicated the time was not far distant when the principle would be ready for practical commercial development. Asked whether the sudden introduction of his principle would upset the present economic system, Dr. Tesla replied, “It is badly upset already.” He added that now as never before was the time ripe for the development of new resources. While in its present form, the theory calls for the development of energy in central plants requiring vast machinery. Dr. Tesla said he might be able to work out a plan for its use by individuals. The central source of cosmic energy for the earth is the Sun, Dr. Tesla said, but “night will not interrupt the flow of new power supply.” Nikola Tesla Portrait circa 1890Clearly Tesla is not talking about an atomic reactor. He is directly converting ionized particles generated by radiant matter. It is not nuclear energy as we know it today. Tesla Radiant Energy is directly converted to electrical power! Tesla believed that the Sun generates highly charged particles and that radiant matter is a re-transmitter of energy, it is this transfer of energy that could be used for practical purposes.

REFERENCES

[1] Nikola Tesla, U.S. Patent #512,340, “COIL FOR ELECTRO MAGNETS,” he explains that a standard coil of 1000 turns with a potential of 100 volts across it will have a difference of .1 volt between turns. A similar bifilar coil will have a potential of 50 volts between turns. In that the stored energy is a function of the square of the voltages the energy in the bifilar will be 502/.12 = 2500/.01 = 250,000 times greater than the standard coil. [2] Michael Pupin, From Immigrant to Inventor, Charles Scribner’s Sons, N.Y., pages 285-286, 1923.
How a Tesla Coil Works ⚡ How to Make a Tesla Coil ⚡ Nikola Tesla – Bing video
  <<< Back  
     
 

Art of Transmitting Electrical Energy Through the Natural Mediums

 
  Canadian Patent No: 142,352, 1906-04-17, 1912-08-13 To all whom it may concern: Be it known that I, Nikola Tesla, a citizen of the United States, residing in the Borough of Manhattan, in the City, County, and State of New York, have discovered a new and useful Improvement in the Art of Transmitting Electrical Energy Through the Natural Mediums of which the following is a specification, reference being had to the drawings accompanying and forming a part of the same. It is known since a long time that electric currents may be propagated through the earth, and this knowledge has been utilized in many ways in the transmission of signals and the operation of a variety of receiving devices remote from the source of energy, mainly with the object of dispensing with a return conducting-wire.  It is also known that electrical disturbances may be transmitted through portions of the earth by grounding only one of the poles of the source, and this fact I have made use of in systems which I have devised for the purpose of transmitting through the natural media intelligible signals or power and which are now familiar; but all experiments and observations heretofore made have tended to confirm the opinion held by the majority of scientific men that the earth, owing to its immense extent, although possessing conducting properties, does not behave in the manner of a conductor of limited dimensions with respect to the disturbances produced, but, on the contrary, much like a vast reservoir or ocean, which, while it may be locally disturbed by a commotion of some kind remains unresponsive and quiescent in a large part or as a whole.  Still another fact now of common knowledge is that when electrical waves or oscillations are impressed upon such a conducting-path as a metallic wire reflection takes place under certain conditions from the end of the wire, and in consequence of the interference of the impressed and reflected oscillations the phenomenon of “stationary waves” with maxima and minima in definite fixed positions is produced.  In any case the existence of these waves indicates that some of the outgoing waves have reached the boundaries of the conducting-path and have been reflected from the same.  Now I have discovered that notwithstanding its vast dimensions and contrary to all observations heretofore made the terrestrial globe may in a large part or as a whole behave toward disturbance impressed upon it in the same manner as a conductor of limited size, this fact being demonstrated by novel phenomena, which I shall hereinafter describe. In the course of certain investigations which I carried on for the purpose of studying the effects of lightning discharges upon the electrical condition of the earth I observed that sensitive receiving instruments arranged so as to be capable of responding to electrical disturbances created by the discharges at times failed to respond when they should have done so, and upon inquiring into the causes of this unexpected behavior I discovered it to be due to the character of the electrical waves which were produced in the earth by the lightning discharges and which had nodal regions following at definite distances the shifting source of the disturbances.  From data obtained in a large number of observations of the maxima and minima of these waves I found their length to vary approximately from twenty-five to seventy kilometre and these results and certain theoretical deductions led me to the conclusion that waves of this kind may be of still more widely differing lengths, the extreme limits being imposed by the physical dimensions and properties of the earth.  Recognising in the existence of these waves an unmistakable evidence that the disturbance created had been conducted from their origin to the most remote portions of the globe and had been thence reflected, I conceived the idea of producing such waves in the earth by artificial means with the object of utilising them for many useful purposes or which they are or might be found applicable.  This problem was rendered extremely difficult owing to the immense dimensions of the planet, and consequently enormous of electricity or rate at which electrical energy had be delivered in order to approximate, even in a remote degree, movements or rates which are manifestly attained in the displays of electrical forces in nature and which seamed at first unrealisable by any human agencies; but by gradual and continuous improvements of a generator of electrical oscillations, which I have described in my United States patents Nos. 646,576 and 649,621, I finally succeeded in reaching electrical movements or rates of delivery of electrical energy not only approximating, but, as shown in many comparative tests and measurements, actually surprising those of lightning discharges, and by means of this apparatus I have found it possible to reproduce whenever desired phenomena in the earth the same as or similar to those due to such discharges.  With the knowledge of the phenomena discovered by me and the means at command for accomplishing these results I am enabled not only to carry out many operations by the use of known instruments, but also to offer a solution for many important problems involving the operation or control of remote devices which for want of this knowledge and the absence of these means have heretofore been entirely impossible.  For example, by the use of such a generator of stationary waves and receiving apparatus properly placed and adjusted in any other locality, however remote, it is practicable to transmit intelligible signals or to control or actuate at will any one or all of such apparatus for many other important and valuable purposes, as for indicating wherever desired the correct time of an observatory or for ascertaining the relative position of a body or distance of the same with reference to a given point or for determining the course of a moving object, such as a vessel at sea, the distance traversed by the same or its speed, or for producing many other effects at a distance dependent on the intensity, wave length, direction or velocity of movement, or other feature or property of disturbances of this character. I shall typically illustrate the manner of applying my discovery by describing one of the specific uses of the same -namely, the transmission of intelligible signals or messages between distant points – and with this object reference is now made to the accompanying drawings, in which – Figure 1 represents diagrammatically the generator which produces stationary waves in the earth, and Fig. 2 an apparatus situated in a remote locality for recording the effects of these waves. In Fig. 1, A designates a primary coil forming part of a transformer and consisting generally of a few turns of a stout cable of inappreciable resistance, the ends of which are connected to the terminals of a source of powerful electrical oscillations, diagrammatically represented by D.  This source is usually a condenser charged to a high potential and discharged in rapid succession through the primary, as in a type of transformer invented by me and now well known; but when it is desired to produce stationary waves of great lengths an alternating dynamo of suitable construction may be used to energize the primary A.  C is a spirally-round secondary coil within the primary having the end nearer to the latter connected to the ground E and the other end to an elevated terminal D.  The physical constants of coil C, determining its period of vibration, are so chosen and adjusted that the secondary system C D is in the closest possible resonance with the oscillations impressed upon it by the primary A.  It is, moreover, of the greatest importance in order to still further enhance the rise of pressure and to increase the electrical movement in the secondary system that its resistance be as small as practicable and its self-induction as large as possible under the conditions imposed.  The ground should be made with great care, with the object of reducing its resistance.  Instead of being directly grounded, as indicated, the coil C may be joined in series or otherwise to the primary A, in which case the latter will be connected to the plate E; but be it that none or a part or all of the primary or exciting turns are included in the coil C the total length of the conductor, from the ground-plate E to the elevated terminal D should be equal to one-quarter of the wave length of the electrical disturbance in the system E C D or else equal to that length multiplied by an odd number.  This relation being observed, the terminal D will be made to coincide with the points of maximum pressure in the secondary or excited circuit, and the greatest flow of electricity will take place in the same.  In order to magnify the electrical movement in the secondary as much as possible, it is essential that its inductive connection with the primary A should not be very intimate, as in ordinary transformers, but loose, so as to permit free oscillation – that is to say, their mutual induction should be small.  The spiral form of coil C secures this advantage, wile the turns near the primary A are subjected to a strong inductive action and develop a high initial electromotive force.  These adjustments and relations being carefully completed and other constructive features indicated rigorously observed, the electrical movement produced in the secondary system by the inductive action of the primary A will be enormously magnified, the increase being directly proportionate to the inductance and frequency and inversely to the resistance of the secondary system.  I have found it practicable to produce in this manner an electrical movement thousands of times greater than the initial that is, the one impressed upon the secondary by the primary A and I have thus reached activities or rates of flow of electrical energy in the system E C D measured by many tens of thousands of horsepower.  Such immense movements of electricity give rise to a variety of novel and striking phenomena, among which are those already described.  The powerful electrical oscillations in the system E C D being communicated to the ground cause corresponding vibrations to be propagated to distant parts of the globe, whence they are reflected and by interference with the outgoing vibrations produce stationary waves the crests and hollows of which lie in parallel circles relatively to which the ground–plate E may be considered to be the pole.  Stated otherwise, the terrestrial conductor is thrown into resonance with the oscillations impressed upon it just like a wire.  More than this, a number of facts ascertained by me clearly show that this movement of electricity trough it follows certain laws with nearly mathematical rigor.  For the present it will be sufficient to state that the planet behaves like a perfectly smooth or polished conductor of inappreciable resistance with capacity and self induction uniformly distributed along the axis of symmetry of wave propagation and transmitting slow electrical oscillations without sensible distortion and attenuation. Besides the above three requirements seem to be essential to the establishment of the resonating condition. First. The earth’s diameter passing through the pole should be an odd multiple of the quarter wave length – that is, of the ratio between the velocity of light – and four times the frequency of the currents. Second. It is necessary to employ oscillations in which the rate of radiation of energy into space in the form of hertzian or electromagnetic waves is very small.  To give an idea, I would say that the frequency should be smaller than twenty thousand per second, through shorter waves might be practicable.  The lowest frequency would appear to be six per second, in which case there will be but one node, at or near the ground-plate, and, paradoxical as it may seem, the effect will increase with the distance and will be greatest in a region diametrically opposite the transmitter.  With oscillations still slower the earth, strictly speaking, will not resonate, but simply act as a capacity, and the variation of potential will be more or less uniform over its entire surface. Third. The most essential requirement is, however, that irrespective of frequency the wave or wave-train should continue for a certain interval of time, which I have estimated to be not less than one-twelfth or probably 0.08484 of a second and which is taken in passing to and returning from the region diametrically opposite the pole over the earth’s surface with a mean velocity of about four hundred and seventy-one thousand two hundred and forty kilometers per second.  [471,240 km/sec.] The presence of the stationary waves may be detected in many ways.  For instance, a circuit may be connected directly or inductively to the ground and to an elevated terminal and tuned to respond more effectively to the oscillations.  Another way is to connect a tuned circuit to the ground at two points lying more or less in a meridian passing through the pole E or, generally stated, to any two points of a different potential. In Fig. 2 I have shown a device for detecting the presence of the waves such as I have used in a novel method of magnifying feeble effects which I have described in my United States patents Nos. 685,953 and 685,955.  It consists of a cylinder of insulating material, which is moved at a uniform rate of speed by clockwork or other suitable motive power and is provided with two metal rings B B, upon which bear brushes a and a’, connected, respectively, to the terminal plates P and P’.  From the ring B B, extend narrow metallic segments s and s’, which by the rotation of the cylinder are brought alternately into contact with double brushes b and b’, carried by and in contact with conducting-holders h and h’, supported in metallic bearings D’ D’, as shown.  The latter are connected to the terminals T and T’ of a condenser C’, and it should be understood that they are capable of angular displacement as ordinary brush-supports.  The object of using two brushes, as b and b’, in each of the holders h and h’ is to vary at will the duration of the electric contact of the plates P and P’ with the terminals T and T’, to which is connected a receiving-circuit including a receiver R and a device d, performing the duty of closing the receiving-circuit at predetermined intervals of time and discharging the stored energy through the receiver.  In the present case this device consists of a cylinder made partly conducting and partly of insulating material e and e’, respectively, which is rotated at the desired rate of speed by any suitable means.  The conducting part e is in good electrical connection with the shaft S and is provided with tapering segments f f, upon which slides a brush k, supported on a conducting-rod l, capable of longitudinal adjustment in a metallic support m.  Another brush, n, is arranged to bear upon the shaft S, and it will be seen that when over one of the segments f comes in contact with the brush k the circuit including the receiver R is completed and the condenser discharged through the same.  By an adjustment of the speed or rotation of the cylinder d and a displacement of the brush k along the cylinder the circuit may be made to open and close in as rapid succession and remain open or closed during such intervals of time as may be desired.  The plates P and P’, through which the electrical energy is conveyed to the brushes a and a’, may be at a considerable distance from each other in the ground or one in the ground and the other in the air, preferably at some height.  If but one plate is connected to earth and the other maintained at an elevation, the location of the apparatus must be determined with reference to the position of the stationary waves established by the generator, the effect evidently being greatest in a maximum and zero in a nodal region.  On the other hand, if both plates be connected to earth the points of connection must be selected with reference to the difference of potential which it is desired to secure, the strongest effect being of course obtained when the plates are at a distance equal to half the wave length. In illustration of the operation of the system let it be assumed that alternating electrical impulse from the generator are caused to produce stationary waves in the earth, as above described, and that the receiving apparatus is properly located with reference to the position of the nodal and ventral regions of the waves.  The speed of rotation of the cylinder first described is varied until it is made to turn in synchronism with the alternate impulses of the generator, and the position of the brushes b and b’ is adjusted by angular displacement or otherwise, so that they are in contact with the segments s and s’ during the periods when the impulses are at or near the maximum of their intensity.  These requirements being fulfilled, electrical charged of the same sign will be conveyed to each of the terminals of the condenser, and with each fresh impulse it will be charged to a higher potential.  The speed of rotation of the cylinder d being adjustable at will, the energy of any number of separate impulses may thus be accumulated in potential from and discharged through the receiver R upon the brush k coming in contact with one of the segments f.  It will be understood that the capacity of the condenser should be such as to allow the storing of a much greater amount of energy than is required for the ordinary operation of the receiver.  Since by this method a relatively great amount of energy and in a suitable form may be made available for the operation of a receiver, the latter need not to be very sensitive; but when the impulses are very weak or when it is desired to operate a receiver very rapidly any of the well-known sensitive devices capable of responding to very feeble influences may be used in the manner indicated or in other ways.  Under the conditions described it is evident that during the continuance of the stationary waves the receiver will be acted upon by current impulses more or less intense, according to its location with reference to the maxima and minima of said waves; but upon interrupting or reducing the flow of the current the stationary waves disappear or diminish in intensity.  Hence a great variety of effects may be produced in a receiver, according to the mode in which the waves are controlled.  It is a practicable, however, to shift the nodal and ventural regions of the waves at will from the sending-station, as by varying the length of the waves under observance of the above requirements.  In this manner the regions of maximum and minimum effect may be made to coincide with any receiving station or stations.  By impressing upon the earth two or more oscillations of different wave length a resultant stationary wave may be made to travel slowly over the globe, and thus a great variety of useful effects may be produced.  Evidently the course of a vessel may be easily determined without the use of a compass, as by a circuit connected to the earth at two points, for the effect exerted upon the circuit will be greatest when the plates P P’ are lying on a meridian passing through ground plate E and will be nil when the plates are located at a parallel circle.  If the nodal and ventural regions are maintained in fixed positions, the speed of a vessel carrying a receiving apparatus may be exactly computed from observations of the maxima and minima regions successively traversed.  This will be understood when it is stated that the projections of all the nodes and loops on the earth’s diameter passing through the pole or axis of symmetry of the wave-movement, are all equal.  Hence in any region at the surface the wave length can be ascertained from simple rules of geometry.  Conversely, knowing the wave-length, the distance from the source can be rapidly calculated.  In like ways the distance of one point from another, the latitude and longitude, the hour, etc.  may be determined from the observation of such stationary waves.  If several such generators of stationary waves – preferably of different length – were installed in judiciously selected localities, the entire globe could be sub-divided in definite zones of electric activity and such and other important data could be at once obtained by simple calculation or readings from suitable graduated instruments. The specific plan of producing the stationary waves, here-in described, might be departed from.  For example, the circuit which impresses the powerful oscillations upon the earth might be connected to the latter at two points. In collecting the energy of these disturbances in any terrestrial region at a distance from their source, for any purpose and, more especially, in appreciable amounts, the most economical results will be generally secured by the employment of my synchronized receiving transformer.  This invention, forming part of my system of transmission of energy through the natural media, has been fully explained in the patents first cited here, but for the better understanding of the present description it is diagrammatically illustrated in Fig. 3.  Its most essential part is a circuit E1 C1 D1 which is connected, arranged and adjusted similarly to the transmitting circuit E C D and which is inductively linked with a secondary circuit A1.  The latter, it scarcely need be stated, may be wound with any desired number of turns, such as will be best suited for the operation of the device designated by M.  The receiving transformer is closely attuned to the oscillations of the conductor E1 C1 D1 the points of maximum potential coincide with the elevated terminal D1 under which conditions the greatest amount of wave energy may be collected and rendered available in the secondary circuit A1 for useful purposes. To complete this description, it may be stated that when it is desired to operate, independently, a great many receiving devices, by such stationary waves of different length, the principles which I have set forth in my British patent 14,579 (1901) and in my United States patents Nos. 723,188 and 725,605 (1903) may be resorted to for rendering the signals or quantities of energy intended for any particular receiver or receivers non-interfering and non-interferable. In the above I have briefly outlined my discovery and indicated only a few uses of the same, but it will be readily seem, that it is of transcending importance for the advancement of many arts and industries, new and old, and capable of innumerable valuable applications. What I claim as my invention is: 1. The art herein described for transmitting electrical energy to a distance consisting in establishing stationary electrical waves in the earth by impressing thereon electrical oscillations of definite frequency. 2. The art herein described for transmitting electrical energy to a distance consisting in establishing electrical oscillations and impressing said oscillations upon the earth and producing therein stationary electric waves. 3. The art herein described for transmitting and utilising electrical energy consisting in establishing stationary electrical waves in the earth, and operating thereby one or more receiving devices remote from the source of energy. 4. The art herein described for transmitting and utilising electrical energy consisting in establishing stationary electrical waves in the earth, and operating thereby one or more receiving devices remote from the source of energy and proprly located with respect to the position of said waves. 5. The art herein described for transmitting and utilising electrical energy consisting in establishing stationary electrical waves in the earth, and varying the length of such waves. 6. The art herein described for transmitting and utilising electrical energy consisting in establishing stationary electrical waves in the earth, and shifting the nodal and ventral region of said waves. 7. The art herein described for transmitting electrical energy consisting in producing stationary electrical oscillations of definite length, impressing said oscillations upon the natural conducting medium and causing thereby a resultant wave or affect to travel slowly over said medium. 8. The art herein described for transmitting electrical energy which consists in establishing stationary electrical waves of different length varying the length of said waves and causing thereby a resultant wave or affect to travel with the desired velocity throughout the natural medium. 9. The art herein described for transmitting and utilising electrical energy consisting in establishing stationary electrical waves, impressing said waves upon the natural conducting medium, varying the intensity of said waves and producing thereby perceptible effects in distant receivers. 10. The art of producing affects at a distance consisting in establishing stationary electrical waves, impressing said waves upon the terrestrial globe, varying the characteristics and relations of said waves and causing thereby affects in distant receivers. 11. The art herein described for transmitting and utilizing electrical energy consisting in establishing stationary electrical waves, impressing the affect of said waves upon the natural medium, positioning receiving apparatus at different places through said medium and determining from the affects or indications of said receiving apparatus the condition of said medium. 12. The art herein described for transmitting electrical energy consisting in establishing electrical waves of definite length and duration and impressing said waves upon the natural medium and thereby throwing said natural medium into resonance. 13. The art herein described for creating great electrical movements in the natural medium, which consists in establishing electrical waves of definite length and duration and impressing said waves upon said natural medium until the same becomes resonant. 14. In a system for the transmission of electrical energy, transmitting apparatus comprising a primary exciting circuit energised by a generator of alternating currents and a resonant secondary circuit of high self induction and small resistance loosely linked with the primary and adapted for throwing the terrestrial globe into resonance, as set forth. 15. In the system for the transmission of electrical energy, a source of primary electrical oscillations such as a condenser circuit and a secondary circuit inductively linked with the same and adapted for throwing the terrestrial globe into resonance, as specified.

Posts of matilda-macelroy.com:

EU and climate change?

Our biological human body has two centres, one our brain and second our heart as energy centre.

How to control anyone at anytime

how Society is Organised for Controlling and Exploiting People

Knowledge about aliens.

Current Alien intervention.

Building a digital prison?

Bioweapons?

Chessboard of deception.

Last Step, Martial law will be introduced.

Climate change no offence mend

War on the people

Eu parliament in action

Human trafficking

Enemies of humanity.

NATO & Russia and the introduction of official censorship in the EU.

Destruction of the US/West.

The big ( Privat) Central Banks.

Population control attempts & history

The soft kill

Galactic Federations.

Star Trek,

Mind Control Techniques The fifth column,

NWO & Alien agenda!

New, Health & Bible, lifestyles!

End to Green dictate by the EU, IMF, World Banks others.

Use of blackmail & distortion

Pope and climate change?

UN & NWO Monkey Virus DNA Found in COVID-19 Shots

Cheats, liars and greed our newly elected Saints.

Dissident control in China being copied by the WEST?

Globalist fantasies?

“We are the Borg. Resistance is futile. Your race will be assimilated and service to us.”

NWO and WEF plus free energy.

“A Covenant With Death”, by Bill Cooper.

WHO attempted power Grab!

The great Awakening, Plandemic 3 Video, please click on link:

The Great Awakening (Full, Unedited Movie) (rumble.com)
rumble.com/v2s0gp8-plandemic-3-the-great-awakening-full-unedited-movie.html

‘The world’s gone mad!’

A conspiracy against god and man! 

Slavery, Power/Greed! 

Humans reduced to a commodity! 

Can the West still turn the tide of tyranny? 

Conspiracy and the coming witch hunt. 

Investigative journalist Seymore Hersh published a shocking article based on whistleblower testimony about the blown-up gas pipe in Europe.

How they managed to capture/control the masses in The West.

Did UFO interfere with nuclear war heads?

Remote viewing, Scientology and CIA

Google at the core of the Cabal?

WEF/NWO and UKRAINE

Mind Control using electromagnetic Frequencies.

The US government and mind reading!

Manipulation our environment/health?

The Marcabians and President Eisenhower!

Food and depopulation and still making a profit!

Censorship, the collusion between The big tech media & politics.

humanityandearth.com links:

De-population attempts?

The great food reset.

The physical Universe. Antarctica and the hollow planets!

Is planet Earth hell?

Humanity & History!

Health and Ageing!

#Mind control, US destruction from inside out!

Africa, Marduk’s Bluff? & Alien response & Putin.

The Biofield and low frequent EM field/waves.

Liberalism now lost?

Dulce, New Mexico, whistle-blower rapport by Thomas Edwin Castello.

Numbers 3, 7, 9,11,13, 33, 39.and the Free- Masons & illuminati.

Loosh, energy generated by all organic life forms.

Mad Science from Dr Mercola publication.

End of the Western Democracy and liberalism.

Banning Early Treatment Was a Crime Against Humanity? 

Messing with vaccinations? 

Big Data, Transhumanism & Why the Singularity May Be Faked.

Skull and Bones Society & Thule society! 

UFO & CIA 

By Ron Hubbard, Founder.

Messing with our food? 

Power & greed, pushing for the economic collapse or great reset.

Forcing the New Dystopian future.

History of the human build UFO’s

Humanity being sold like cattle, agenda 21 UN.

EU Central bank, pushing for Digital currency.

Fake Meat & Junk Food

Pushing for a nuclear war?

Use of frequencies and effects on our bio energy field that surrounds our body. – My Blog (energy-from-space.com)

 

 

Table of Contents (Selected Tesla Patents)

Additional Information


5 responses to “Tesla patents”

Leave a Reply

Your email address will not be published. Required fields are marked *